Commit 051759c1 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #382 from zhou-chao:l0smooth

parents 752e2a5c e4c78ef8
......@@ -89,6 +89,18 @@
organization={ACM}
}
@inproceedings{xu2011image,
title={Image smoothing via L 0 gradient minimization},
author={Xu, Li and Lu, Cewu and Xu, Yi and Jia, Jiaya},
booktitle={ACM Transactions on Graphics (TOG)},
volume={30},
number={6},
pages={174},
year={2011},
organization={ACM}
}
@inproceedings{Revaud2015,
title={EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow},
author={Revaud, Jerome and Weinzaepfel, Philippe and Harchaoui, Zaid and Schmid, Cordelia},
......
......@@ -378,6 +378,19 @@ it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
*/
CV_EXPORTS_W void fastGlobalSmootherFilter(InputArray guide, InputArray src, OutputArray dst, double lambda, double sigma_color, double lambda_attenuation=0.25, int num_iter=3);
/** @brief Global image smoothing via L0 gradient minimization.
@param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
@param dst destination image.
@param lambda parameter defining the smooth term weight.
@param kappa parameter defining the increasing factor of the weight of the gradient data term.
For more details about L0 Smoother, see the original paper @cite xu2011image.
*/
CV_EXPORTS_W void l0Smooth(InputArray src, OutputArray dst, double lambda = 0.02, double kappa = 2.0);
//! @}
}
}
......
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "perf_precomp.hpp"
namespace cvtest
{
using std::tr1::tuple;
using std::tr1::get;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::ximgproc;
typedef tuple<Size, MatType, int> L0SmoothTestParam;
typedef TestBaseWithParam<L0SmoothTestParam> L0SmoothTest;
PERF_TEST_P(L0SmoothTest, perf,
Combine(
SZ_TYPICAL,
Values(CV_8U, CV_16U, CV_32F, CV_64F),
Values(1, 3))
)
{
L0SmoothTestParam params = GetParam();
Size sz = get<0>(params);
int depth = get<1>(params);
int srcCn = get<2>(params);
Mat src(sz, CV_MAKE_TYPE(depth, srcCn));
Mat dst(sz, src.type());
cv::setNumThreads(cv::getNumberOfCPUs());
declare.in(src, WARMUP_RNG).out(dst).tbb_threads(cv::getNumberOfCPUs());
RNG rnd(sz.height + depth + srcCn);
double lambda = rnd.uniform(0.01, 0.05);
double kappa = rnd.uniform(1.0, 3.0);
TEST_CYCLE_N(1)
{
l0Smooth(src, dst, lambda, kappa);
}
SANITY_CHECK_NOTHING();
}
}
This diff is collapsed.
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
namespace cvtest
{
using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;
CV_ENUM(SrcTypes, CV_8UC1, CV_8UC3, CV_16UC1, CV_16UC3);
typedef tuple<Size, SrcTypes> L0SmoothParams;
typedef TestWithParam<L0SmoothParams> L0SmoothTest;
TEST(L0SmoothTest, SplatSurfaceAccuracy)
{
RNG rnd(0);
for (int i = 0; i < 3; i++)
{
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
Scalar surfaceValue;
int srcCn = 3;
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
double lambda = rnd.uniform(0.01, 0.05);
double kappa = rnd.uniform(1.5, 5.0);
Mat res;
l0Smooth(src, res, lambda, kappa);
// When filtering a constant image we should get the same image:
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels();
EXPECT_LE(normL1, 1.0/64);
}
}
TEST_P(L0SmoothTest, MultiThreadReproducibility)
{
if (cv::getNumberOfCPUs() == 1)
return;
double MAX_DIF = 10.0;
double MAX_MEAN_DIF = 1.0 / 8.0;
int loopsCount = 2;
RNG rng(0);
L0SmoothParams params = GetParam();
Size size = get<0>(params);
int srcType = get<1>(params);
Mat src(size,srcType);
if(src.depth()==CV_8U)
randu(src, 0, 255);
else if(src.depth()==CV_16U)
randu(src, 0, 65535);
else
randu(src, -100000.0f, 100000.0f);
for (int iter = 0; iter <= loopsCount; iter++)
{
double lambda = rng.uniform(0.01, 0.05);
double kappa = rng.uniform(1.5, 5.0);
cv::setNumThreads(cv::getNumberOfCPUs());
Mat resMultiThread;
l0Smooth(src, resMultiThread, lambda, kappa);
cv::setNumThreads(1);
Mat resSingleThread;
l0Smooth(src, resSingleThread, lambda, kappa);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF*src.total()*src.channels());
}
}
INSTANTIATE_TEST_CASE_P(FullSet, L0SmoothTest,Combine(Values(szODD, szQVGA), SrcTypes::all()));
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment