Commit 01aa6593 authored by Alex Leontiev's avatar Alex Leontiev

coding style: vadim comments

parent 4e14e8c8
......@@ -88,12 +88,11 @@ using namespace tld;
* 11. group decls logically, order of statements
*
* ?10. all in one class
* todo: initializer lists; const methods
* todo:
* initializer lists;
* const methods
*
* ?( )
*
* ?vadim: for{1command} can omit {}; if( a != (b + c) ) vs ( a != ( b + c ) ); if{} for{} method{} oneline:spaces, omit{};
* 1-statement for/if without {}
*/
/* design decisions:
......@@ -178,7 +177,7 @@ public:
void setBoudingBox(Rect2d boundingBox){ boundingBox_ = boundingBox; }
double getOriginalVariance(){ return originalVariance_; }
inline double ensembleClassifierNum(const uchar* data);
inline void prepareClassifiers(int rowstep){ for( int i = 0; i < (int)classifiers.size(); i++ ) classifiers[i].prepareClassifier(rowstep); }
inline void prepareClassifiers(int rowstep);
double Sr(const Mat_<uchar>& patch);
double Sc(const Mat_<uchar>& patch);
void integrateRelabeled(Mat& img, Mat& imgBlurred, const std::vector<TLDDetector::LabeledPatch>& patches);
......@@ -326,7 +325,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
for( int i = 0; i < 2; i++ )
{
Rect2d tmpCandid = boundingBox;
if( ( (i == 0) && !(data->failedLastTime) && trackerProxy->update(image, tmpCandid) ) ||
if( ( (i == 0) && !data->failedLastTime && trackerProxy->update(image, tmpCandid) ) ||
( (i == 1) && detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults) ) )
{
candidates.push_back(tmpCandid);
......@@ -395,7 +394,8 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
if( detectorResults[i].isObject )
{
expertResult = nExpert(detectorResults[i].rect);
if( expertResult != detectorResults[i].isObject ){ negRelabeled++; }
if( expertResult != detectorResults[i].isObject )
negRelabeled++;
}
else
{
......@@ -758,7 +758,7 @@ void TrackerTLDModel::integrateAdditional(const std::vector<Mat_<uchar> >& eForM
for( int i = 0; i < (int)classifiers.size(); i++ )
p += classifiers[i].posteriorProbability(eForEnsemble[k].data, (int)eForEnsemble[k].step[0]);
p /= classifiers.size();
if( (p > ENSEMBLE_THRESHOLD) != isPositive )
if( ( p > ENSEMBLE_THRESHOLD ) != isPositive )
{
if( isPositive )
positiveIntoEnsemble++;
......@@ -935,5 +935,10 @@ void TrackerTLDModel::pushIntoModel(const Mat_<uchar>& example, bool positive)
}
(*proxyN)++;
}
void TrackerTLDModel::prepareClassifiers(int rowstep)
{
for( int i = 0; i < (int)classifiers.size(); i++ )
classifiers[i].prepareClassifier(rowstep);
}
} /* namespace cv */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment