• AmbroiseMoreau's avatar
    first commit. Interface for sinusoidal pattern profilometry has been added along… · e439f26d
    AmbroiseMoreau authored
    first commit. Interface for sinusoidal pattern profilometry has been added along with stubs functions in the implementation class. The new interface inherits from StructuredLightPattern
    
    Added markers to sinusoidal patterns
    
    computePhaseMap for Fourier transform profilometry
    
    computePhaseMap for Fourier transform profilometry
    
    added phase map computation for PSP. Changed the maskDftRegion to frequencyFiltering. It uses regions of interest and can filter symmetrically. Also added computeShadowMask and computeDataModulationTerm
    
    changed formatting in structured light module. First commit for the phase unwrapping module. So far, pixel reliabilities are computed and edges are sorted in a histogram.
    
    Fixed an error in edges sorting. Added the unwrap histogram method. It computes the number of 2*Pi that has to be added to each pixel to unwrap the phase map
    
    added an example for phase unwrapping and a test that unwraps a simple phase map
    
    Added documentation draft and a small example that can generate sinusoidal patterns
    
    removed unnecessary include
    
    added a few comments in sinusoidalpattern.cpp and histogramphaseunwrapping.cpp. Removed some redudancy about mask in the reliability computation. Changed formatting
    
    projector calibration as a sample
    
    bug fix
    
    calibration + cap sinus example
    
    doc and tutorials
    
    modified calibration example
    
    fix for pr
    
    fix for pr
    
    shadow mask for FTP as in the reference paper
    
    changed doc
    
    added test for faps
    
    dummy commit
    
    fixing warnings in test
    
    changed test to use jpeg
    
    dummy
    
    changed permissions and used atan2(x,y) instead of atan
    
    dummy commit
    
    dummy
    
    setting dmt to zero near shadow mask border. It reduces noise
    
    bug fix in dmt computation
    
    dummy commit for build bots
    
    dummy commit for build bots
    e439f26d
capsinpattern.cpp 12.8 KB
/*M///////////////////////////////////////////////////////////////////////////////////////
 //
 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 //
 //  By downloading, copying, installing or using the software you agree to this license.
 //  If you do not agree to this license, do not download, install,
 //  copy or use the software.
 //
 //
 //                           License Agreement
 //                For Open Source Computer Vision Library
 //
 // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
 // Third party copyrights are property of their respective owners.
 //
 // Redistribution and use in source and binary forms, with or without modification,
 // are permitted provided that the following conditions are met:
 //
 //   * Redistribution's of source code must retain the above copyright notice,
 //     this list of conditions and the following disclaimer.
 //
 //   * Redistribution's in binary form must reproduce the above copyright notice,
 //     this list of conditions and the following disclaimer in the documentation
 //     and/or other materials provided with the distribution.
 //
 //   * The name of the copyright holders may not be used to endorse or promote products
 //     derived from this software without specific prior written permission.
 //
 // This software is provided by the copyright holders and contributors "as is" and
 // any express or implied warranties, including, but not limited to, the implied
 // warranties of merchantability and fitness for a particular purpose are disclaimed.
 // In no event shall the Intel Corporation or contributors be liable for any direct,
 // indirect, incidental, special, exemplary, or consequential damages
 // (including, but not limited to, procurement of substitute goods or services;
 // loss of use, data, or profits; or business interruption) however caused
 // and on any theory of liability, whether in contract, strict liability,
 // or tort (including negligence or otherwise) arising in any way out of
 // the use of this software, even if advised of the possibility of such damage.
 //
 //M*/

#include <opencv2/highgui.hpp>
#include <vector>
#include <iostream>
#include <fstream>
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/structured_light.hpp>
#include <opencv2/phase_unwrapping.hpp>

using namespace cv;
using namespace std;

static const char* keys =
{
    "{@width | | Projector width}"
    "{@height | | Projector height}"
    "{@periods | | Number of periods}"
    "{@setMarkers | | Patterns with or without markers}"
    "{@horizontal | | Patterns are horizontal}"
    "{@methodId | | Method to be used}"
    "{@outputPatternPath | | Path to save patterns}"
    "{@outputWrappedPhasePath | | Path to save wrapped phase map}"
    "{@outputUnwrappedPhasePath | | Path to save unwrapped phase map}"
    "{@outputCapturePath | | Path to save the captures}"
    "{@reliabilitiesPath | | Path to save reliabilities}"
};
static void help()
{
    cout << "\nThis example generates sinusoidal patterns" << endl;
    cout << "To call: ./example_structured_light_createsinuspattern <width> <height>"
            " <number_of_period> <set_marker>(bool) <horizontal_patterns>(bool) <method_id>"
            " <output_captures_path> <output_pattern_path>(optional) <output_wrapped_phase_path> (optional)"
            " <output_unwrapped_phase_path>" << endl;
}

int main(int argc, char **argv)
{
    if( argc < 2 )
    {
        help();
        return -1;
    }
    structured_light::SinusoidalPattern::Params params;
    phase_unwrapping::HistogramPhaseUnwrapping::Params paramsUnwrapping;

    // Retrieve parameters written in the command line
    CommandLineParser parser(argc, argv, keys);
    params.width = parser.get<int>(0);
    params.height = parser.get<int>(1);
    params.nbrOfPeriods = parser.get<int>(2);
    params.setMarkers = parser.get<bool>(3);
    params.horizontal = parser.get<bool>(4);
    params.methodId = parser.get<int>(5);
    String outputCapturePath = parser.get<String>(6);

    params.shiftValue = static_cast<float>(2 * CV_PI / 3);
    params.nbrOfPixelsBetweenMarkers = 70;
    String outputPatternPath = parser.get<String>(7);
    String outputWrappedPhasePath = parser.get<String>(8);
    String outputUnwrappedPhasePath = parser.get<String>(9);
    String reliabilitiesPath = parser.get<String>(10);

    Ptr<structured_light::SinusoidalPattern> sinus = structured_light::SinusoidalPattern::create(params);
    Ptr<phase_unwrapping::HistogramPhaseUnwrapping> phaseUnwrapping;

    vector<Mat> patterns;
    Mat shadowMask;
    Mat unwrappedPhaseMap, unwrappedPhaseMap8;
    Mat wrappedPhaseMap, wrappedPhaseMap8;
    //Generate sinusoidal patterns
    sinus->generate(patterns);


    VideoCapture cap(CAP_PVAPI);
    if( !cap.isOpened() )
    {
        cout << "Camera could not be opened" << endl;
        return -1;
    }
    cap.set(CAP_PROP_PVAPI_PIXELFORMAT, CAP_PVAPI_PIXELFORMAT_MONO8);

    namedWindow("pattern", WINDOW_NORMAL);
    setWindowProperty("pattern", WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);
    imshow("pattern", patterns[0]);
    cout << "Press any key when ready" << endl;
    waitKey(0);

    int nbrOfImages = 30;
    int count = 0;

    vector<Mat> img(nbrOfImages);
    Size camSize(-1, -1);

    while( count < nbrOfImages )
    {
        for(int i = 0; i < (int)patterns.size(); ++i )
        {
            imshow("pattern", patterns[i]);
            waitKey(300);
            cap >> img[count];
            count += 1;
        }
    }

    cout << "press enter when ready" << endl;
    bool loop = true;
    while ( loop )
    {
        char c = (char) waitKey(0);
        if( c == 10 )
        {
            loop = false;
        }
    }

    switch(params.methodId)
    {
        case structured_light::FTP:
            for( int i = 0; i < nbrOfImages; ++i )
            {
                /*We need three images to compute the shadow mask, as described in the reference paper
                 * even if the phase map is computed from one pattern only
                */
                vector<Mat> captures;
                if( i == nbrOfImages - 2 )
                {
                    captures.push_back(img[i]);
                    captures.push_back(img[i-1]);
                    captures.push_back(img[i+1]);
                }
                else if( i == nbrOfImages - 1 )
                {
                    captures.push_back(img[i]);
                    captures.push_back(img[i-1]);
                    captures.push_back(img[i-2]);
                }
                else
                {
                    captures.push_back(img[i]);
                    captures.push_back(img[i+1]);
                    captures.push_back(img[i+2]);
                }
                sinus->computePhaseMap(captures, wrappedPhaseMap, shadowMask);
                if( camSize.height == -1 )
                {
                    camSize.height = img[i].rows;
                    camSize.width = img[i].cols;
                    paramsUnwrapping.height = camSize.height;
                    paramsUnwrapping.width = camSize.width;
                    phaseUnwrapping =
                    phase_unwrapping::HistogramPhaseUnwrapping::create(paramsUnwrapping);
                }
                sinus->unwrapPhaseMap(wrappedPhaseMap, unwrappedPhaseMap, camSize, shadowMask);

                phaseUnwrapping->unwrapPhaseMap(wrappedPhaseMap, unwrappedPhaseMap, shadowMask);
                Mat reliabilities, reliabilities8;
                phaseUnwrapping->getInverseReliabilityMap(reliabilities);
                reliabilities.convertTo(reliabilities8, CV_8U, 255,128);

                ostringstream tt;
                tt << i;
                imwrite(reliabilitiesPath + tt.str() + ".png", reliabilities8);

                unwrappedPhaseMap.convertTo(unwrappedPhaseMap8, CV_8U, 1, 128);
                wrappedPhaseMap.convertTo(wrappedPhaseMap8, CV_8U, 255, 128);

                if( !outputUnwrappedPhasePath.empty() )
                {
                    ostringstream name;
                    name << i;
                    imwrite(outputUnwrappedPhasePath + "_FTP_" + name.str() + ".png", unwrappedPhaseMap8);
                }

                if( !outputWrappedPhasePath.empty() )
                {
                    ostringstream name;
                    name << i;
                    imwrite(outputWrappedPhasePath + "_FTP_" + name.str() + ".png", wrappedPhaseMap8);
                }
            }
            break;
        case structured_light::PSP:
        case structured_light::FAPS:
            for( int i = 0; i < nbrOfImages - 2; ++i )
            {
                vector<Mat> captures;
                captures.push_back(img[i]);
                captures.push_back(img[i+1]);
                captures.push_back(img[i+2]);

                sinus->computePhaseMap(captures, wrappedPhaseMap, shadowMask);

                if( camSize.height == -1 )
                {
                    camSize.height = img[i].rows;
                    camSize.width = img[i].cols;
                    paramsUnwrapping.height = camSize.height;
                    paramsUnwrapping.width = camSize.width;
                    phaseUnwrapping =
                    phase_unwrapping::HistogramPhaseUnwrapping::create(paramsUnwrapping);
                }
                sinus->unwrapPhaseMap(wrappedPhaseMap, unwrappedPhaseMap, camSize, shadowMask);
                unwrappedPhaseMap.convertTo(unwrappedPhaseMap8, CV_8U, 1, 128);
                wrappedPhaseMap.convertTo(wrappedPhaseMap8, CV_8U, 255, 128);

                phaseUnwrapping->unwrapPhaseMap(wrappedPhaseMap, unwrappedPhaseMap, shadowMask);
                Mat reliabilities, reliabilities8;
                phaseUnwrapping->getInverseReliabilityMap(reliabilities);
                reliabilities.convertTo(reliabilities8, CV_8U, 255,128);

                ostringstream tt;
                tt << i;
                imwrite(reliabilitiesPath + tt.str() + ".png", reliabilities8);

                if( !outputUnwrappedPhasePath.empty() )
                {
                    ostringstream name;
                    name << i;
                    if( params.methodId == structured_light::PSP )
                        imwrite(outputUnwrappedPhasePath + "_PSP_" + name.str() + ".png", unwrappedPhaseMap8);
                    else
                        imwrite(outputUnwrappedPhasePath + "_FAPS_" + name.str() + ".png", unwrappedPhaseMap8);
                }

                if( !outputWrappedPhasePath.empty() )
                {
                    ostringstream name;
                    name << i;
                    if( params.methodId == structured_light::PSP )
                        imwrite(outputWrappedPhasePath + "_PSP_" + name.str() + ".png", wrappedPhaseMap8);
                    else
                        imwrite(outputWrappedPhasePath + "_FAPS_" + name.str() + ".png", wrappedPhaseMap8);
                }

                if( !outputCapturePath.empty() )
                {
                    ostringstream name;
                    name << i;
                    if( params.methodId == structured_light::PSP )
                        imwrite(outputCapturePath + "_PSP_" + name.str() + ".png", img[i]);
                    else
                        imwrite(outputCapturePath + "_FAPS_" + name.str() + ".png", img[i]);
                    if( i == nbrOfImages - 3 )
                    {
                        if( params.methodId == structured_light::PSP )
                        {
                            ostringstream nameBis;
                            nameBis << i+1;
                            ostringstream nameTer;
                            nameTer << i+2;
                            imwrite(outputCapturePath + "_PSP_" + nameBis.str() + ".png", img[i+1]);
                            imwrite(outputCapturePath + "_PSP_" + nameTer.str() + ".png", img[i+2]);
                        }
                        else
                        {
                            ostringstream nameBis;
                            nameBis << i+1;
                            ostringstream nameTer;
                            nameTer << i+2;
                            imwrite(outputCapturePath + "_FAPS_" + nameBis.str() + ".png", img[i+1]);
                            imwrite(outputCapturePath + "_FAPS_" + nameTer.str() + ".png", img[i+2]);
                        }
                    }
                }
            }
            break;
        default:
            cout << "error" << endl;
    }
    cout << "done" << endl;

    if( !outputPatternPath.empty() )
    {
        for( int i = 0; i < 3; ++ i )
        {
            ostringstream name;
            name << i + 1;
            imwrite(outputPatternPath + name.str() + ".png", patterns[i]);
        }
    }

    loop = true;
    while( loop )
    {
        char key = (char) waitKey(0);
        if( key == 27 )
        {
            loop = false;
        }
    }
    return 0;
}