1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "fully_connected_layer.hpp"
#include "op_blas.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core/ocl.hpp>
namespace cv
{
namespace dnn
{
FullyConnectedLayerImpl::FullyConnectedLayerImpl(int axis_)
{
axis = axis_;
}
void FullyConnectedLayerImpl::allocate(const std::vector<Blob*> &input, std::vector<Blob> &output)
{
CV_Assert(input.size() > 0);
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
CV_Assert(blobs[0].dims() == 2);
bias = (blobs.size() >= 1);
axisCan = input[0]->canonicalAxis(axis);
dtype = input[0]->type();
numOutput = blobs[0].size(0);
innerSize = blobs[0].size(1);
outerSize = input[0]->total(0, axisCan);
CV_Assert((size_t)innerSize == input[0]->total(axisCan));
CV_Assert(!bias || (size_t)numOutput == blobs[1].total());
useOpenCL = ocl::useOpenCL();
int allocFlags = useOpenCL ? Blob::ALLOC_UMAT : Blob::ALLOC_UMAT;
biasOnesBlob.create(Shape(outerSize, 1), dtype, allocFlags);
biasOnesBlob.setTo(1);
output.resize(input.size());
for (size_t i = 0; i < input.size(); i++)
{
CV_Assert(i == 0 || (input[i]->equalShape(*input[0]) && input[i]->type() == dtype));
Shape outShape = Shape(outerSize, numOutput);
output[i].create(outShape, dtype, allocFlags);
}
}
void FullyConnectedLayerImpl::forward(std::vector<Blob*> &input, std::vector<Blob> &output)
{
#ifdef HAVE_OPENCL
if (useOpenCL)
forward_<UMat>(input, output);
else
#endif
forward_<Mat>(input, output);
}
template<typename XMat>
void FullyConnectedLayerImpl::forward_(std::vector<Blob *> &input, std::vector<Blob> &output)
{
const XMat &weight = blobs[0].getRefConst<XMat>();
const XMat *biasMat = NULL, *biasOnesMat = NULL;
if (bias)
{
biasOnesMat = &biasOnesBlob.getRefConst<XMat>();
biasMat = &blobs[1].getRefConst<XMat>();
}
for (size_t i = 0; i < input.size(); i++)
{
const XMat srcMat = reshaped(input[i]->getRefConst<XMat>(), Shape(outerSize, innerSize));
XMat dstMat = reshaped(output[i].getRef<XMat>(), Shape(outerSize, numOutput));
dnn::gemm(srcMat, weight, 1, dstMat, 0, GEMM_2_T);
if (bias)
dnn::gemm(*biasOnesMat, *biasMat, 1, dstMat, 1);
}
}
Ptr<InnerProductLayer> InnerProductLayer::create(int axis)
{
return Ptr<InnerProductLayer>(new FullyConnectedLayerImpl(axis));
}
}
}