dpm_feature.cpp 14.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2015, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "dpm_feature.hpp"

using namespace std;

namespace cv
{
namespace dpm
{

Feature::Feature()
{
}

Feature::Feature (PyramidParameter p):params(p)
{
}

void Feature::computeFeaturePyramid(const Mat &imageM, vector< Mat > &pyramid)
{
    ParalComputePyramid paralTask(imageM, pyramid, params);
    paralTask.initialize();
    parallel_for_(Range(0, params.interval), paralTask);
}

ParalComputePyramid::ParalComputePyramid(const Mat &inputImage, \
        vector< Mat > &outputPyramid,\
        PyramidParameter &p):
    imageM(inputImage), pyramid(outputPyramid), params(p)
{
}

void ParalComputePyramid::initialize()
{
    CV_Assert(params.interval > 0);

    // scale factor between two levels
    params.sfactor = pow(2.0, 1.0/params.interval);
    imSize = imageM.size();
    params.maxScale = 1 + (int)floor(log(min(imSize.width, imSize.height)/(float)(params.binSize*5.0))/log(params.sfactor));

    if (params.maxScale < params.interval)
    {
        CV_Error(CV_StsBadArg, "The image is too small to create a pyramid");
        return;
    }

    pyramid.resize(params.maxScale + params.interval);
    params.scales.resize(params.maxScale + params.interval);
}

void ParalComputePyramid::operator() (const Range &range) const
{
    for (int i = range.start; i != range.end; i++)
    {
        const double scale = (double)(1.0f/pow(params.sfactor, i));
        Mat imScaled;
        resize(imageM, imScaled, imSize * scale);

        params.scales[i] = 2*scale;

        // First octave at twice the image resolution
        Feature::computeHOG32D(imScaled, pyramid[i],
                params.binSize/2, params.padx + 1, params.pady + 1);

        // Second octave at the original resolution
        if (i + params.interval <= params.maxScale)
            Feature::computeHOG32D(imScaled, pyramid[i+params.interval],
                    params.binSize, params.padx + 1, params.pady + 1);

        params.scales[i+params.interval] = scale;

        // Remaining octaves
        for ( int j = i + params.interval; j < params.maxScale; j += params.interval)
        {
            Mat imScaled2;
            Size_<double> imScaledSize = imScaled.size();
            resize(imScaled, imScaled2, imScaledSize*0.5);
            imScaled = imScaled2;
            Feature::computeHOG32D(imScaled2, pyramid[j+params.interval],
                    params.binSize, params.padx + 1, params.pady + 1);
            params.scales[j+params.interval] = params.scales[j]*0.5;
        }
    }
}

void Feature::computeHOG32D(const Mat &imageM, Mat &featM, const int sbin, const int pad_x, const int pad_y)
{
    CV_Assert(pad_x >= 0);
    CV_Assert(pad_y >= 0);
    CV_Assert(imageM.channels() == 3);
    CV_Assert(imageM.depth() == CV_64F);

    // epsilon to avoid division by zero
    const double eps = 0.0001;
    // number of orientations
    const int numOrient = 18;
    // unit vectors to compute gradient orientation
    const double uu[9] = {1.000, 0.9397, 0.7660, 0.5000, 0.1736, -0.1736, -0.5000, -0.7660, -0.9397};
    const double vv[9] = {0.000, 0.3420, 0.6428, 0.8660, 0.9848,  0.9848,  0.8660,  0.6428,  0.3420};

    // image size
    const Size imageSize = imageM.size();
    // block size
    int bW = cvRound((double)imageSize.width/(double)sbin);
    int bH = cvRound((double)imageSize.height/(double)sbin);
    const Size blockSize(bW, bH);
    // size of HOG features
    int oW = max(blockSize.width-2, 0) + 2*pad_x;
    int oH = max(blockSize.height-2, 0) + 2*pad_y;
    Size outSize = Size(oW, oH);
    // size of visible
    const Size visible = blockSize*sbin;

    // initialize historgram, norm, output feature matrices
    Mat histM = Mat::zeros(Size(blockSize.width*numOrient, blockSize.height), CV_64F);
    Mat normM = Mat::zeros(Size(blockSize.width, blockSize.height), CV_64F);
    featM = Mat::zeros(Size(outSize.width*dimHOG, outSize.height), CV_64F);

    // get the stride of each matrix
    const size_t imStride = imageM.step1();
    const size_t histStride = histM.step1();
    const size_t normStride = normM.step1();
    const size_t featStride = featM.step1();

    // calculate the zero offset
    const double* im = imageM.ptr<double>(0);
    double* const hist = histM.ptr<double>(0);
    double* const norm = normM.ptr<double>(0);
    double* const feat = featM.ptr<double>(0);

    for (int y = 1; y < visible.height - 1; y++)
    {
        for (int x = 1; x < visible.width - 1; x++)
        {
            // OpenCV uses an interleaved format: BGR-BGR-BGR
            const double* s = im + 3*min(x, imageM.cols-2) + min(y, imageM.rows-2)*imStride;

            // blue image channel
            double dyb = *(s+imStride) - *(s-imStride);
            double dxb = *(s+3) - *(s-3);
            double vb = dxb*dxb + dyb*dyb;

            // green image channel
            s += 1;
            double dyg = *(s+imStride) - *(s-imStride);
            double dxg = *(s+3) - *(s-3);
            double vg = dxg*dxg + dyg*dyg;

            // red image channel
            s += 1;
            double dy = *(s+imStride) - *(s-imStride);
            double dx = *(s+3) - *(s-3);
            double v = dx*dx + dy*dy;

            // pick the channel with the strongest gradient
            if (vg > v) { v = vg; dx = dxg; dy = dyg; }
            if (vb > v) { v = vb; dx = dxb; dy = dyb; }

            // snap to one of the 18 orientations
            double best_dot = 0;
            int best_o = 0;
            for (int o = 0; o < (int)numOrient/2; o++)
            {
                double dot =  uu[o]*dx + vv[o]*dy;
                if (dot > best_dot)
                {
                    best_dot = dot;
                    best_o = o;
                }
                else if (-dot > best_dot)
                {
                    best_dot = -dot;
                    best_o = o + (int)(numOrient/2);
                }
            }

            // add to 4 historgrams around pixel using bilinear interpolation
            double yp =  ((double)y+0.5)/(double)sbin - 0.5;
            double xp =  ((double)x+0.5)/(double)sbin - 0.5;
            int iyp = (int)floor(yp);
            int ixp = (int)floor(xp);
            double vy0 = yp - iyp;
            double vx0 = xp - ixp;
            double vy1 = 1.0 - vy0;
            double vx1 = 1.0 - vx0;
            v = sqrt(v);

            // fill the value into the 4 neighborhood cells
            if (iyp >= 0 && ixp >= 0)
                *(hist + iyp*histStride + ixp*numOrient + best_o) += vy1*vx1*v;

            if (iyp >= 0 && ixp+1 < blockSize.width)
                *(hist + iyp*histStride + (ixp+1)*numOrient + best_o) += vx0*vy1*v;

            if (iyp+1 < blockSize.height && ixp >= 0)
                *(hist + (iyp+1)*histStride + ixp*numOrient + best_o) += vy0*vx1*v;

            if (iyp+1 < blockSize.height && ixp+1 < blockSize.width)
                *(hist + (iyp+1)*histStride + (ixp+1)*numOrient + best_o) += vy0*vx0*v;

        } // for y
    } // for x

    // compute the energy in each block by summing over orientation
    for (int y = 0; y < blockSize.height; y++)
    {
        const double* src = hist + y*histStride;
        double* dst = norm + y*normStride;
        double const* const dst_end = dst + blockSize.width;
        // for each cell
        while (dst < dst_end)
        {
            *dst = 0;
            for (int o = 0; o < (int)(numOrient/2); o++)
            {
                *dst += (*src + *(src + numOrient/2))*
                    (*src + *(src + numOrient/2));
                src++;
            }
            dst++;
            src += numOrient/2;
        }
    }

    // compute the features
    for (int y = pad_y; y < outSize.height - pad_y; y++)
    {
        for (int x = pad_x; x < outSize.width - pad_x; x++)
        {
            double* dst = feat + y*featStride + x*dimHOG;
            double* p, n1, n2, n3, n4;
            const double* src;

            p = norm + (y - pad_y + 1)*normStride + (x - pad_x + 1);
            n1 = 1.0f / sqrt(*p + *(p + 1) + *(p + normStride) + *(p + normStride + 1) + eps);
            p = norm + (y - pad_y)*normStride + (x - pad_x + 1);
            n2 = 1.0f / sqrt(*p + *(p + 1) + *(p + normStride) + *(p + normStride + 1) + eps);
            p = norm + (y- pad_y + 1)*normStride + x - pad_x;
            n3 = 1.0f / sqrt(*p + *(p + 1) + *(p + normStride) + *(p + normStride + 1) + eps);
            p = norm + (y - pad_y)*normStride + x - pad_x;
            n4 = 1.0f / sqrt(*p + *(p + 1) + *(p + normStride) + *(p + normStride + 1) + eps);

            double t1 = 0.0, t2 = 0.0, t3 = 0.0, t4 = 0.0;

            // contrast-sesitive features
            src = hist + (y - pad_y + 1)*histStride + (x - pad_x + 1)*numOrient;
            for (int o = 0; o < numOrient; o++)
            {
                double val = *src;
                double h1 = min(val*n1, 0.2);
                double h2 = min(val*n2, 0.2);
                double h3 = min(val*n3, 0.2);
                double h4 = min(val*n4, 0.2);
                *(dst++) = 0.5 * (h1 + h2 + h3 + h4);
                src++;
                t1 += h1;
                t2 += h2;
                t3 += h3;
                t4 += h4;
            }

            // contrast-insensitive features
            src =  hist + (y - pad_y + 1)*histStride + (x - pad_x + 1)*numOrient;
            for (int o = 0; o < numOrient/2; o++)
            {
                double sum = *src + *(src + numOrient/2);
                double h1 = min(sum * n1, 0.2);
                double h2 = min(sum * n2, 0.2);
                double h3 = min(sum * n3, 0.2);
                double h4 = min(sum * n4, 0.2);
                *(dst++) = 0.5 * (h1 + h2 + h3 + h4);
                src++;
            }

            // texture features
            *(dst++) = 0.2357 * t1;
            *(dst++) = 0.2357 * t2;
            *(dst++) = 0.2357 * t3;
            *(dst++) = 0.2357 * t4;

            // truncation feature
            *dst = 0;
        }// for x
    }// for y

    // Truncation features
    for (int m = 0; m < featM.rows; m++)
    {
        for (int n = 0; n < featM.cols; n += dimHOG)
        {
            if (m > pad_y - 1 && m < featM.rows - pad_y && n > pad_x*dimHOG - 1 && n < featM.cols - pad_x*dimHOG)
                continue;

            featM.at<double>(m, n + dimHOG - 1) = 1;
        } // for x
    }// for y
}

void Feature::projectFeaturePyramid(const Mat &pcaCoeff, const std::vector< Mat > &pyramid, std::vector< Mat > &projPyramid)
{
    CV_Assert(dimHOG == pcaCoeff.rows);
    dimPCA = pcaCoeff.cols;

    projPyramid.resize(pyramid.size());

    // loop for each level of the pyramid
    for (unsigned int i = 0; i < pyramid.size(); i++)
    {
        Mat orgM = pyramid[i];
        // note that the features are stored in 32-32-32
        int width = orgM.cols/dimHOG;
        int height = orgM.rows;
        // initialize the project feature matrix
        Mat projM = Mat::zeros(height, width*dimPCA, CV_64F);
        //get the pointer of the matrix
        double* const featOrg = orgM.ptr<double>(0);
        double* const featProj = projM.ptr<double>(0);

        // get the stride of each matrix
        const size_t orgStride = orgM.step1();
        const size_t projStride = projM.step1();

        for (int y = 0; y < height; y++)
        {
            for (int x = 0; x < width; x++)
            {
                double* proj = featProj + y*projStride + x*dimPCA;
                // for each pca dimension
                for (int c = 0; c < dimPCA; c++)
                {
                    double* org = featOrg + y*orgStride + x*dimHOG;
                    // dot product 32d HOG feature with the coefficient vector
                    for (int r = 0; r < dimHOG; r++)
                    {
                        *proj += *org * pcaCoeff.at<double>(r, c);
                        org++;
                    }
                    proj++;
                }

            } // for x
        } // for y
        projPyramid[i] = projM;
    } // for each level of the pyramid
}

void Feature::computeLocationFeatures(const int numLevels, Mat &locFeature)
{
    locFeature = Mat::zeros(Size(numLevels, 3), CV_64F);

    int b = 0;
    int e = min(numLevels, params.interval);

    for (int x = b; x < e; x++)
        locFeature.at<double>(0, x) = 1;

    b = e;
    e = min(numLevels, 2*e);

    for (int x = b; x < e; x++)
        locFeature.at<double>(1, x) = 1;

    b = e;
    e = min(numLevels, 3*e);

    for (int x = b; x < e; x++)
        locFeature.at<double>(2, x) = 1;
}
} // namespace dpm
} // namespace cv