waldboost.cpp 14.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.


                          License Agreement
               For Open Source Computer Vision Library
                       (3-clause BSD License)

Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015, OpenCV Foundation, all rights reserved.
Copyright (C) 2015, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

  * Neither the names of the copyright holders nor the names of the contributors
    may be used to endorse or promote products derived from this software
    without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/

#include "precomp.hpp"

namespace cv {
namespace xobjdetect {

static void compute_cdf(const Mat1b& data,
                        const Mat1f& weights,
                        Mat1f& cdf)
{
    for (int i = 0; i < cdf.cols; ++i)
        cdf(0, i) = 0;

    for (int i = 0; i < weights.cols; ++i) {
        cdf(0, data(0, i)) += weights(0, i);
    }

    for (int i = 1; i < cdf.cols; ++i) {
        cdf(0, i) += cdf(0, i - 1);
    }
}

static void compute_min_step(const Mat &data_pos, const Mat &data_neg, size_t n_bins,
                      Mat &data_min, Mat &data_step)
{
    // Check that quantized data will fit in unsigned char
    assert(n_bins <= 256);

    assert(data_pos.rows == data_neg.rows);

    Mat reduced_pos, reduced_neg;

    reduce(data_pos, reduced_pos, 1, CV_REDUCE_MIN);
    reduce(data_neg, reduced_neg, 1, CV_REDUCE_MIN);
    min(reduced_pos, reduced_neg, data_min);
    data_min -= 0.01;

    Mat data_max;
    reduce(data_pos, reduced_pos, 1, CV_REDUCE_MAX);
    reduce(data_neg, reduced_neg, 1, CV_REDUCE_MAX);
    max(reduced_pos, reduced_neg, data_max);
    data_max += 0.01;

    data_step = (data_max - data_min) / (double)(n_bins - 1);
}

static void quantize_data(Mat &data, Mat1f &data_min, Mat1f &data_step)
{
//#pragma omp parallel for
    for (int col = 0; col < data.cols; ++col) {
        data.col(col) -= data_min;
        data.col(col) /= data_step;
    }
    data.convertTo(data, CV_8U);
}

WaldBoost::WaldBoost(int weak_count):
    weak_count_(weak_count),
    thresholds_(),
    alphas_(),
    feature_indices_(),
    polarities_(),
    cascade_thresholds_() {}

WaldBoost::WaldBoost():
    weak_count_(),
    thresholds_(),
    alphas_(),
    feature_indices_(),
    polarities_(),
    cascade_thresholds_() {}

std::vector<int> WaldBoost::get_feature_indices()
{
    return feature_indices_;
}

void WaldBoost::detect(Ptr<CvFeatureEvaluator> eval,
            const Mat& img, const std::vector<float>& scales,
            std::vector<Rect>& bboxes, Mat1f& confidences)
{
    bboxes.clear();
    confidences.release();

    Mat resized_img;
    int step = 4;
    float h;
    for (size_t i = 0; i < scales.size(); ++i) {
        float scale = scales[i];
        resize(img, resized_img, Size(), scale, scale, INTER_LINEAR_EXACT);
        eval->setImage(resized_img, 0, 0, feature_indices_);
        int n_rows = (int)(24 / scale);
        int n_cols = (int)(24 / scale);
        for (int r = 0; r + 24 < resized_img.rows; r += step) {
            for (int c = 0; c + 24 < resized_img.cols; c += step) {
                //eval->setImage(resized_img(Rect(c, r, 24, 24)), 0, 0);
                eval->setWindow(Point(c, r));
                if (predict(eval, &h) == +1) {
                    int row = (int)(r / scale);
                    int col = (int)(c / scale);
                    bboxes.push_back(Rect(col, row, n_cols, n_rows));
                    confidences.push_back(h);
                }
            }
        }
    }
    groupRectangles(bboxes, 3, 0.7);
}

void WaldBoost::detect(Ptr<CvFeatureEvaluator> eval,
            const Mat& img, const std::vector<float>& scales,
            std::vector<Rect>& bboxes, std::vector<double>& confidences)
{
    bboxes.clear();
    confidences.clear();

    Mat resized_img;
    int step = 4;
    float h;
    for (size_t i = 0; i < scales.size(); ++i) {
        float scale = scales[i];
        resize(img, resized_img, Size(), scale, scale, INTER_LINEAR_EXACT);
        eval->setImage(resized_img, 0, 0, feature_indices_);
        int n_rows = (int)(24 / scale);
        int n_cols = (int)(24 / scale);
        for (int r = 0; r + 24 < resized_img.rows; r += step) {
            for (int c = 0; c + 24 < resized_img.cols; c += step) {
                eval->setWindow(Point(c, r));
                if (predict(eval, &h) == +1) {
                    int row = (int)(r / scale);
                    int col = (int)(c / scale);
                    bboxes.push_back(Rect(col, row, n_cols, n_rows));
                    confidences.push_back(h);
                }
            }
        }
    }
    std::vector<int> levels(bboxes.size(), 0);
    groupRectangles(bboxes, levels, confidences, 3, 0.7);
}

void WaldBoost::fit(Mat& data_pos, Mat& data_neg)
{
    // data_pos: F x N_pos
    // data_neg: F x N_neg
    // every feature corresponds to row
    // every sample corresponds to column
    assert(data_pos.rows >= weak_count_);
    assert(data_pos.rows == data_neg.rows);

    std::vector<bool> feature_ignore;
    for (int i = 0; i < data_pos.rows; ++i) {
        feature_ignore.push_back(false);
    }

    Mat1f pos_weights(1, data_pos.cols, 1.0f / (2 * data_pos.cols));
    Mat1f neg_weights(1, data_neg.cols, 1.0f / (2 * data_neg.cols));
    Mat1f pos_trace(1, data_pos.cols, 0.0f);
    Mat1f neg_trace(1, data_neg.cols, 0.0f);

    bool quantize = false;
    if (data_pos.type() != CV_8U) {
        std::cerr << "quantize" << std::endl;
        quantize = true;
    }

    Mat1f data_min, data_step;
    int n_bins = 256;
    if (quantize) {
        compute_min_step(data_pos, data_neg, n_bins, data_min, data_step);
        quantize_data(data_pos, data_min, data_step);
        quantize_data(data_neg, data_min, data_step);
    }

    std::cerr << "pos=" << data_pos.cols << " neg=" << data_neg.cols << std::endl;
    for (int i = 0; i < weak_count_; ++i) {
        // Train weak learner with lowest error using weights
        double min_err = DBL_MAX;
        int min_feature_ind = -1;
        int min_polarity = 0;
        int threshold_q = 0;
        float min_threshold = 0;
//#pragma omp parallel for
        for (int feat_i = 0; feat_i < data_pos.rows; ++feat_i) {
            if (feature_ignore[feat_i])
                continue;

            // Construct cdf
            Mat1f pos_cdf(1, n_bins), neg_cdf(1, n_bins);
            compute_cdf(data_pos.row(feat_i), pos_weights, pos_cdf);
            compute_cdf(data_neg.row(feat_i), neg_weights, neg_cdf);

            float neg_total = (float)sum(neg_weights)[0];
            Mat1f err_direct = pos_cdf + neg_total - neg_cdf;
            Mat1f err_backward = 1.0f - err_direct;

            int idx1[2], idx2[2];
            double err1, err2;
            minMaxIdx(err_direct, &err1, NULL, idx1);
            minMaxIdx(err_backward, &err2, NULL, idx2);
//#pragma omp critical
            {
            if (min(err1, err2) < min_err) {
                if (err1 < err2) {
                    min_err = err1;
                    min_polarity = +1;
                    threshold_q = idx1[1];
                } else {
                    min_err = err2;
                    min_polarity = -1;
                    threshold_q = idx2[1];
                }
                min_feature_ind = feat_i;
                if (quantize) {
                    min_threshold = data_min(feat_i, 0) + data_step(feat_i, 0) *
                        (threshold_q + .5f);
                } else {
                    min_threshold = threshold_q + .5f;
                }
            }
            }
        }


        float alpha = .5f * (float)log((1 - min_err) / min_err);
        alphas_.push_back(alpha);
        feature_indices_.push_back(min_feature_ind);
        thresholds_.push_back(min_threshold);
        polarities_.push_back(min_polarity);
        feature_ignore[min_feature_ind] = true;

        double loss = 0;
        // Update positive weights
        for (int j = 0; j < data_pos.cols; ++j) {
            int val = data_pos.at<unsigned char>(min_feature_ind, j);
            int label = min_polarity * (val - threshold_q) >= 0 ? +1 : -1;
            pos_weights(0, j) *= exp(-alpha * label);
            pos_trace(0, j) += alpha * label;
            loss += exp(-pos_trace(0, j)) / (2.0f * data_pos.cols);
        }

        // Update negative weights
        for (int j = 0; j < data_neg.cols; ++j) {
            int val = data_neg.at<unsigned char>(min_feature_ind, j);
            int label = min_polarity * (val - threshold_q) >= 0 ? +1 : -1;
            neg_weights(0, j) *= exp(alpha * label);
            neg_trace(0, j) += alpha * label;
            loss += exp(+neg_trace(0, j)) / (2.0f * data_neg.cols);
        }
        double cascade_threshold = -1;
        minMaxIdx(pos_trace, &cascade_threshold);
        cascade_thresholds_.push_back((float)cascade_threshold);

        std::cerr << "i=" << std::setw(4) << i;
        std::cerr << " feat=" << std::setw(5) << min_feature_ind;
        std::cerr << " thr=" << std::setw(3) << threshold_q;
        std::cerr << " casthr=" << std::fixed << std::setprecision(3)
             << cascade_threshold;
        std::cerr <<  " alpha=" << std::fixed << std::setprecision(3)
             << alpha << " err=" << std::fixed << std::setprecision(3) << min_err
             << " loss=" << std::scientific << loss << std::endl;

        //int pos = 0;
        //for (int j = 0; j < data_pos.cols; ++j) {
        //    if (pos_trace(0, j) > cascade_threshold - 0.5) {
        //        pos_trace(0, pos) = pos_trace(0, j);
        //        data_pos.col(j).copyTo(data_pos.col(pos));
        //        pos_weights(0, pos) = pos_weights(0, j);
        //        pos += 1;
        //    }
        //}
        //std::cerr << "pos " << data_pos.cols << "/" << pos << std::endl;
        //pos_trace = pos_trace.colRange(0, pos);
        //data_pos = data_pos.colRange(0, pos);
        //pos_weights = pos_weights.colRange(0, pos);

        int pos = 0;
        for (int j = 0; j < data_neg.cols; ++j) {
            if (neg_trace(0, j) > cascade_threshold - 0.5) {
                neg_trace(0, pos) = neg_trace(0, j);
                data_neg.col(j).copyTo(data_neg.col(pos));
                neg_weights(0, pos) = neg_weights(0, j);
                pos += 1;
            }
        }
        std::cerr << "neg " << data_neg.cols << "/" << pos << std::endl;
        neg_trace = neg_trace.colRange(0, pos);
        data_neg = data_neg.colRange(0, pos);
        neg_weights = neg_weights.colRange(0, pos);


        if (loss < 1e-50 || min_err > 0.5) {
            std::cerr << "Stopping early" << std::endl;
            weak_count_ = i + 1;
            break;
        }

        // Normalize weights
        double z = (sum(pos_weights) + sum(neg_weights))[0];
        pos_weights /= z;
        neg_weights /= z;
    }
}

int WaldBoost::predict(Ptr<CvFeatureEvaluator> eval, float *h) const
{
    assert(feature_indices_.size() == size_t(weak_count_));
    assert(cascade_thresholds_.size() == size_t(weak_count_));
    float res = 0;
    int count = weak_count_;
    for (int i = 0; i < count; ++i) {
        float val = (*eval)(feature_indices_[i]);
        int label = polarities_[i] * (val - thresholds_[i]) > 0 ? +1: -1;
        res += alphas_[i] * label;
        if (res < cascade_thresholds_[i]) {
            return -1;
        }
    }
    *h = res;
    return res > cascade_thresholds_[count - 1] ? +1 : -1;
}

void WaldBoost::write(FileStorage &fs) const
{
    fs << "{";
    fs << "waldboost_params"
       << "{" << "weak_count" << weak_count_ << "}";

    fs << "thresholds" << "[";
    for (size_t i = 0; i < thresholds_.size(); ++i)
        fs << thresholds_[i];
    fs << "]";

    fs << "alphas" << "[";
    for (size_t i = 0; i < alphas_.size(); ++i)
        fs << alphas_[i];
    fs << "]";

    fs << "polarities" << "[";
    for (size_t i = 0; i < polarities_.size(); ++i)
        fs << polarities_[i];
    fs << "]";

    fs << "cascade_thresholds" << "[";
    for (size_t i = 0; i < cascade_thresholds_.size(); ++i)
        fs << cascade_thresholds_[i];
    fs << "]";

    fs << "feature_indices" << "[";
    for (size_t i = 0; i < feature_indices_.size(); ++i)
        fs << feature_indices_[i];
    fs << "]";

    fs << "}";
}

void WaldBoost::read(const FileNode &node)
{
    weak_count_ = (int)(node["waldboost_params"]["weak_count"]);
    thresholds_.resize(weak_count_);
    alphas_.resize(weak_count_);
    polarities_.resize(weak_count_);
    cascade_thresholds_.resize(weak_count_);
    feature_indices_.resize(weak_count_);

    FileNodeIterator n;

    n = node["thresholds"].begin();
    for (int i = 0; i < weak_count_; ++i, ++n)
        *n >> thresholds_[i];

    n = node["alphas"].begin();
    for (int i = 0; i < weak_count_; ++i, ++n)
        *n >> alphas_[i];

    n = node["polarities"].begin();
    for (int i = 0; i < weak_count_; ++i, ++n)
        *n >> polarities_[i];

    n = node["cascade_thresholds"].begin();
    for (int i = 0; i < weak_count_; ++i, ++n)
        *n >> cascade_thresholds_[i];

    n = node["feature_indices"].begin();
    for (int i = 0; i < weak_count_; ++i, ++n)
        *n >> feature_indices_[i];
}

void WaldBoost::reset(int weak_count)
{
    weak_count_ = weak_count;
    thresholds_.clear();
    alphas_.clear();
    feature_indices_.clear();
    polarities_.clear();
    cascade_thresholds_.clear();
}

WaldBoost::~WaldBoost()
{
}

}
}