1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
#include "opencv2/aruco/charuco.hpp"
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
namespace cv {
namespace aruco {
using namespace std;
/**
*/
void CharucoBoard::draw(Size outSize, OutputArray _img, int marginSize, int borderBits) {
CV_Assert(outSize.area() > 0);
CV_Assert(marginSize >= 0);
_img.create(outSize, CV_8UC1);
_img.setTo(255);
Mat out = _img.getMat();
Mat noMarginsImg =
out.colRange(marginSize, out.cols - marginSize).rowRange(marginSize, out.rows - marginSize);
double totalLengthX, totalLengthY;
totalLengthX = _squareLength * _squaresX;
totalLengthY = _squareLength * _squaresY;
// proportional transformation
double xReduction = totalLengthX / double(noMarginsImg.cols);
double yReduction = totalLengthY / double(noMarginsImg.rows);
// determine the zone where the chessboard is placed
Mat chessboardZoneImg;
if(xReduction > yReduction) {
int nRows = int(totalLengthY / xReduction);
int rowsMargins = (noMarginsImg.rows - nRows) / 2;
chessboardZoneImg = noMarginsImg.rowRange(rowsMargins, noMarginsImg.rows - rowsMargins);
} else {
int nCols = int(totalLengthX / yReduction);
int colsMargins = (noMarginsImg.cols - nCols) / 2;
chessboardZoneImg = noMarginsImg.colRange(colsMargins, noMarginsImg.cols - colsMargins);
}
// determine the margins to draw only the markers
// take the minimum just to be sure
double squareSizePixels = min(double(chessboardZoneImg.cols) / double(_squaresX),
double(chessboardZoneImg.rows) / double(_squaresY));
double diffSquareMarkerLength = (_squareLength - _markerLength) / 2;
int diffSquareMarkerLengthPixels =
int(diffSquareMarkerLength * squareSizePixels / _squareLength);
// draw markers
Mat markersImg;
aruco::_drawPlanarBoardImpl(this, chessboardZoneImg.size(), markersImg,
diffSquareMarkerLengthPixels, borderBits);
markersImg.copyTo(chessboardZoneImg);
// now draw black squares
for(int y = 0; y < _squaresY; y++) {
for(int x = 0; x < _squaresX; x++) {
if(y % 2 != x % 2) continue; // white corner, dont do anything
double startX, startY;
startX = squareSizePixels * double(x);
startY = double(chessboardZoneImg.rows) - squareSizePixels * double(y + 1);
Mat squareZone = chessboardZoneImg.rowRange(int(startY), int(startY + squareSizePixels))
.colRange(int(startX), int(startX + squareSizePixels));
squareZone.setTo(0);
}
}
}
/**
*/
Ptr<CharucoBoard> CharucoBoard::create(int squaresX, int squaresY, float squareLength,
float markerLength, const Ptr<Dictionary> &dictionary) {
CV_Assert(squaresX > 1 && squaresY > 1 && markerLength > 0 && squareLength > markerLength);
Ptr<CharucoBoard> res = makePtr<CharucoBoard>();
res->_squaresX = squaresX;
res->_squaresY = squaresY;
res->_squareLength = squareLength;
res->_markerLength = markerLength;
res->dictionary = dictionary;
float diffSquareMarkerLength = (squareLength - markerLength) / 2;
// calculate Board objPoints
for(int y = squaresY - 1; y >= 0; y--) {
for(int x = 0; x < squaresX; x++) {
if(y % 2 == x % 2) continue; // black corner, no marker here
vector< Point3f > corners;
corners.resize(4);
corners[0] = Point3f(x * squareLength + diffSquareMarkerLength,
y * squareLength + diffSquareMarkerLength + markerLength, 0);
corners[1] = corners[0] + Point3f(markerLength, 0, 0);
corners[2] = corners[0] + Point3f(markerLength, -markerLength, 0);
corners[3] = corners[0] + Point3f(0, -markerLength, 0);
res->objPoints.push_back(corners);
// first ids in dictionary
int nextId = (int)res->ids.size();
res->ids.push_back(nextId);
}
}
// now fill chessboardCorners
for(int y = 0; y < squaresY - 1; y++) {
for(int x = 0; x < squaresX - 1; x++) {
Point3f corner;
corner.x = (x + 1) * squareLength;
corner.y = (y + 1) * squareLength;
corner.z = 0;
res->chessboardCorners.push_back(corner);
}
}
res->_getNearestMarkerCorners();
return res;
}
/**
* Fill nearestMarkerIdx and nearestMarkerCorners arrays
*/
void CharucoBoard::_getNearestMarkerCorners() {
nearestMarkerIdx.resize(chessboardCorners.size());
nearestMarkerCorners.resize(chessboardCorners.size());
unsigned int nMarkers = (unsigned int)ids.size();
unsigned int nCharucoCorners = (unsigned int)chessboardCorners.size();
for(unsigned int i = 0; i < nCharucoCorners; i++) {
double minDist = -1; // distance of closest markers
Point3f charucoCorner = chessboardCorners[i];
for(unsigned int j = 0; j < nMarkers; j++) {
// calculate distance from marker center to charuco corner
Point3f center = Point3f(0, 0, 0);
for(unsigned int k = 0; k < 4; k++)
center += objPoints[j][k];
center /= 4.;
double sqDistance;
Point3f distVector = charucoCorner - center;
sqDistance = distVector.x * distVector.x + distVector.y * distVector.y;
if(j == 0 || fabs(sqDistance - minDist) < 0.0001) {
// if same minimum distance (or first iteration), add to nearestMarkerIdx vector
nearestMarkerIdx[i].push_back(j);
minDist = sqDistance;
} else if(sqDistance < minDist) {
// if finding a closest marker to the charuco corner
nearestMarkerIdx[i].clear(); // remove any previous added marker
nearestMarkerIdx[i].push_back(j); // add the new closest marker index
minDist = sqDistance;
}
}
// for each of the closest markers, search the marker corner index closer
// to the charuco corner
for(unsigned int j = 0; j < nearestMarkerIdx[i].size(); j++) {
nearestMarkerCorners[i].resize(nearestMarkerIdx[i].size());
double minDistCorner = -1;
for(unsigned int k = 0; k < 4; k++) {
double sqDistance;
Point3f distVector = charucoCorner - objPoints[nearestMarkerIdx[i][j]][k];
sqDistance = distVector.x * distVector.x + distVector.y * distVector.y;
if(k == 0 || sqDistance < minDistCorner) {
// if this corner is closer to the charuco corner, assing its index
// to nearestMarkerCorners
minDistCorner = sqDistance;
nearestMarkerCorners[i][j] = k;
}
}
}
}
}
/**
* Remove charuco corners if any of their minMarkers closest markers has not been detected
*/
static int _filterCornersWithoutMinMarkers(const Ptr<CharucoBoard> &_board,
InputArray _allCharucoCorners,
InputArray _allCharucoIds,
InputArray _allArucoIds, int minMarkers,
OutputArray _filteredCharucoCorners,
OutputArray _filteredCharucoIds) {
CV_Assert(minMarkers >= 0 && minMarkers <= 2);
vector< Point2f > filteredCharucoCorners;
vector< int > filteredCharucoIds;
// for each charuco corner
for(unsigned int i = 0; i < _allCharucoIds.getMat().total(); i++) {
int currentCharucoId = _allCharucoIds.getMat().at< int >(i);
int totalMarkers = 0; // nomber of closest marker detected
// look for closest markers
for(unsigned int m = 0; m < _board->nearestMarkerIdx[currentCharucoId].size(); m++) {
int markerId = _board->ids[_board->nearestMarkerIdx[currentCharucoId][m]];
bool found = false;
for(unsigned int k = 0; k < _allArucoIds.getMat().total(); k++) {
if(_allArucoIds.getMat().at< int >(k) == markerId) {
found = true;
break;
}
}
if(found) totalMarkers++;
}
// if enough markers detected, add the charuco corner to the final list
if(totalMarkers >= minMarkers) {
filteredCharucoIds.push_back(currentCharucoId);
filteredCharucoCorners.push_back(_allCharucoCorners.getMat().at< Point2f >(i));
}
}
// parse output
Mat(filteredCharucoCorners).copyTo(_filteredCharucoCorners);
Mat(filteredCharucoIds).copyTo(_filteredCharucoIds);
return (int)_filteredCharucoIds.total();
}
/**
* ParallelLoopBody class for the parallelization of the charuco corners subpixel refinement
* Called from function _selectAndRefineChessboardCorners()
*/
class CharucoSubpixelParallel : public ParallelLoopBody {
public:
CharucoSubpixelParallel(const Mat *_grey, vector< Point2f > *_filteredChessboardImgPoints,
vector< Size > *_filteredWinSizes, const Ptr<DetectorParameters> &_params)
: grey(_grey), filteredChessboardImgPoints(_filteredChessboardImgPoints),
filteredWinSizes(_filteredWinSizes), params(_params) {}
void operator()(const Range &range) const {
const int begin = range.start;
const int end = range.end;
for(int i = begin; i < end; i++) {
vector< Point2f > in;
in.push_back((*filteredChessboardImgPoints)[i]);
Size winSize = (*filteredWinSizes)[i];
if(winSize.height == -1 || winSize.width == -1)
winSize = Size(params->cornerRefinementWinSize, params->cornerRefinementWinSize);
cornerSubPix(*grey, in, winSize, Size(),
TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS,
params->cornerRefinementMaxIterations,
params->cornerRefinementMinAccuracy));
(*filteredChessboardImgPoints)[i] = in[0];
}
}
private:
CharucoSubpixelParallel &operator=(const CharucoSubpixelParallel &); // to quiet MSVC
const Mat *grey;
vector< Point2f > *filteredChessboardImgPoints;
vector< Size > *filteredWinSizes;
const Ptr<DetectorParameters> ¶ms;
};
/**
* @brief From all projected chessboard corners, select those inside the image and apply subpixel
* refinement. Returns number of valid corners.
*/
static int _selectAndRefineChessboardCorners(InputArray _allCorners, InputArray _image,
OutputArray _selectedCorners,
OutputArray _selectedIds,
const vector< Size > &winSizes) {
const int minDistToBorder = 2; // minimum distance of the corner to the image border
// remaining corners, ids and window refinement sizes after removing corners outside the image
vector< Point2f > filteredChessboardImgPoints;
vector< Size > filteredWinSizes;
vector< int > filteredIds;
// filter corners outside the image
Rect innerRect(minDistToBorder, minDistToBorder, _image.getMat().cols - 2 * minDistToBorder,
_image.getMat().rows - 2 * minDistToBorder);
for(unsigned int i = 0; i < _allCorners.getMat().total(); i++) {
if(innerRect.contains(_allCorners.getMat().at< Point2f >(i))) {
filteredChessboardImgPoints.push_back(_allCorners.getMat().at< Point2f >(i));
filteredIds.push_back(i);
filteredWinSizes.push_back(winSizes[i]);
}
}
// if none valid, return 0
if(filteredChessboardImgPoints.size() == 0) return 0;
// corner refinement, first convert input image to grey
Mat grey;
if(_image.getMat().type() == CV_8UC3)
cvtColor(_image.getMat(), grey, COLOR_BGR2GRAY);
else
_image.getMat().copyTo(grey);
const Ptr<DetectorParameters> params = DetectorParameters::create(); // use default params for corner refinement
//// For each of the charuco corners, apply subpixel refinement using its correspondind winSize
// for(unsigned int i=0; i<filteredChessboardImgPoints.size(); i++) {
// vector<Point2f> in;
// in.push_back(filteredChessboardImgPoints[i]);
// Size winSize = filteredWinSizes[i];
// if(winSize.height == -1 || winSize.width == -1)
// winSize = Size(params.cornerRefinementWinSize, params.cornerRefinementWinSize);
// cornerSubPix(grey, in, winSize, Size(),
// TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS,
// params->cornerRefinementMaxIterations,
// params->cornerRefinementMinAccuracy));
// filteredChessboardImgPoints[i] = in[0];
//}
// this is the parallel call for the previous commented loop (result is equivalent)
parallel_for_(
Range(0, (int)filteredChessboardImgPoints.size()),
CharucoSubpixelParallel(&grey, &filteredChessboardImgPoints, &filteredWinSizes, params));
// parse output
Mat(filteredChessboardImgPoints).copyTo(_selectedCorners);
Mat(filteredIds).copyTo(_selectedIds);
return (int)filteredChessboardImgPoints.size();
}
/**
* Calculate the maximum window sizes for corner refinement for each charuco corner based on the
* distance to their closest markers
*/
static void _getMaximumSubPixWindowSizes(InputArrayOfArrays markerCorners, InputArray markerIds,
InputArray charucoCorners, const Ptr<CharucoBoard> &board,
vector< Size > &sizes) {
unsigned int nCharucoCorners = (unsigned int)charucoCorners.getMat().total();
sizes.resize(nCharucoCorners, Size(-1, -1));
for(unsigned int i = 0; i < nCharucoCorners; i++) {
if(charucoCorners.getMat().at< Point2f >(i) == Point2f(-1, -1)) continue;
if(board->nearestMarkerIdx[i].size() == 0) continue;
double minDist = -1;
int counter = 0;
// calculate the distance to each of the closest corner of each closest marker
for(unsigned int j = 0; j < board->nearestMarkerIdx[i].size(); j++) {
// find marker
int markerId = board->ids[board->nearestMarkerIdx[i][j]];
int markerIdx = -1;
for(unsigned int k = 0; k < markerIds.getMat().total(); k++) {
if(markerIds.getMat().at< int >(k) == markerId) {
markerIdx = k;
break;
}
}
if(markerIdx == -1) continue;
Point2f markerCorner =
markerCorners.getMat(markerIdx).at< Point2f >(board->nearestMarkerCorners[i][j]);
Point2f charucoCorner = charucoCorners.getMat().at< Point2f >(i);
double dist = norm(markerCorner - charucoCorner);
if(minDist == -1) minDist = dist; // if first distance, just assign it
minDist = min(dist, minDist);
counter++;
}
// if this is the first closest marker, dont do anything
if(counter == 0)
continue;
else {
// else, calculate the maximum window size
int winSizeInt = int(minDist - 2); // remove 2 pixels for safety
if(winSizeInt < 1) winSizeInt = 1; // minimum size is 1
if(winSizeInt > 10) winSizeInt = 10; // maximum size is 10
sizes[i] = Size(winSizeInt, winSizeInt);
}
}
}
/**
* Interpolate charuco corners using approximated pose estimation
*/
static int _interpolateCornersCharucoApproxCalib(InputArrayOfArrays _markerCorners,
InputArray _markerIds, InputArray _image,
const Ptr<CharucoBoard> &_board,
InputArray _cameraMatrix, InputArray _distCoeffs,
OutputArray _charucoCorners,
OutputArray _charucoIds) {
CV_Assert(_image.getMat().channels() == 1 || _image.getMat().channels() == 3);
CV_Assert(_markerCorners.total() == _markerIds.getMat().total() &&
_markerIds.getMat().total() > 0);
// approximated pose estimation using marker corners
Mat approximatedRvec, approximatedTvec;
int detectedBoardMarkers;
Ptr<Board> _b = _board.staticCast<Board>();
detectedBoardMarkers =
aruco::estimatePoseBoard(_markerCorners, _markerIds, _b,
_cameraMatrix, _distCoeffs, approximatedRvec, approximatedTvec);
if(detectedBoardMarkers == 0) return 0;
// project chessboard corners
vector< Point2f > allChessboardImgPoints;
projectPoints(_board->chessboardCorners, approximatedRvec, approximatedTvec, _cameraMatrix,
_distCoeffs, allChessboardImgPoints);
// calculate maximum window sizes for subpixel refinement. The size is limited by the distance
// to the closes marker corner to avoid erroneous displacements to marker corners
vector< Size > subPixWinSizes;
_getMaximumSubPixWindowSizes(_markerCorners, _markerIds, allChessboardImgPoints, _board,
subPixWinSizes);
// filter corners outside the image and subpixel-refine charuco corners
return _selectAndRefineChessboardCorners(allChessboardImgPoints, _image, _charucoCorners,
_charucoIds, subPixWinSizes);
}
/**
* Interpolate charuco corners using local homography
*/
static int _interpolateCornersCharucoLocalHom(InputArrayOfArrays _markerCorners,
InputArray _markerIds, InputArray _image,
const Ptr<CharucoBoard> &_board,
OutputArray _charucoCorners,
OutputArray _charucoIds) {
CV_Assert(_image.getMat().channels() == 1 || _image.getMat().channels() == 3);
CV_Assert(_markerCorners.total() == _markerIds.getMat().total() &&
_markerIds.getMat().total() > 0);
unsigned int nMarkers = (unsigned int)_markerIds.getMat().total();
// calculate local homographies for each marker
vector< Mat > transformations;
transformations.resize(nMarkers);
for(unsigned int i = 0; i < nMarkers; i++) {
vector< Point2f > markerObjPoints2D;
int markerId = _markerIds.getMat().at< int >(i);
vector< int >::const_iterator it = find(_board->ids.begin(), _board->ids.end(), markerId);
if(it == _board->ids.end()) continue;
int boardIdx = (int)std::distance<std::vector<int>::const_iterator>(_board->ids.begin(), it);
markerObjPoints2D.resize(4);
for(unsigned int j = 0; j < 4; j++)
markerObjPoints2D[j] =
Point2f(_board->objPoints[boardIdx][j].x, _board->objPoints[boardIdx][j].y);
transformations[i] = getPerspectiveTransform(markerObjPoints2D, _markerCorners.getMat(i));
}
unsigned int nCharucoCorners = (unsigned int)_board->chessboardCorners.size();
vector< Point2f > allChessboardImgPoints(nCharucoCorners, Point2f(-1, -1));
// for each charuco corner, calculate its interpolation position based on the closest markers
// homographies
for(unsigned int i = 0; i < nCharucoCorners; i++) {
Point2f objPoint2D = Point2f(_board->chessboardCorners[i].x, _board->chessboardCorners[i].y);
vector< Point2f > interpolatedPositions;
for(unsigned int j = 0; j < _board->nearestMarkerIdx[i].size(); j++) {
int markerId = _board->ids[_board->nearestMarkerIdx[i][j]];
int markerIdx = -1;
for(unsigned int k = 0; k < _markerIds.getMat().total(); k++) {
if(_markerIds.getMat().at< int >(k) == markerId) {
markerIdx = k;
break;
}
}
if(markerIdx != -1) {
vector< Point2f > in, out;
in.push_back(objPoint2D);
perspectiveTransform(in, out, transformations[markerIdx]);
interpolatedPositions.push_back(out[0]);
}
}
// none of the closest markers detected
if(interpolatedPositions.size() == 0) continue;
// more than one closest marker detected, take middle point
if(interpolatedPositions.size() > 1) {
allChessboardImgPoints[i] = (interpolatedPositions[0] + interpolatedPositions[1]) / 2.;
}
// a single closest marker detected
else allChessboardImgPoints[i] = interpolatedPositions[0];
}
// calculate maximum window sizes for subpixel refinement. The size is limited by the distance
// to the closes marker corner to avoid erroneous displacements to marker corners
vector< Size > subPixWinSizes;
_getMaximumSubPixWindowSizes(_markerCorners, _markerIds, allChessboardImgPoints, _board,
subPixWinSizes);
// filter corners outside the image and subpixel-refine charuco corners
return _selectAndRefineChessboardCorners(allChessboardImgPoints, _image, _charucoCorners,
_charucoIds, subPixWinSizes);
}
/**
*/
int interpolateCornersCharuco(InputArrayOfArrays _markerCorners, InputArray _markerIds,
InputArray _image, const Ptr<CharucoBoard> &_board,
OutputArray _charucoCorners, OutputArray _charucoIds,
InputArray _cameraMatrix, InputArray _distCoeffs, int minMarkers) {
// if camera parameters are avaible, use approximated calibration
if(_cameraMatrix.total() != 0) {
_interpolateCornersCharucoApproxCalib(_markerCorners, _markerIds, _image, _board,
_cameraMatrix, _distCoeffs, _charucoCorners,
_charucoIds);
}
// else use local homography
else {
_interpolateCornersCharucoLocalHom(_markerCorners, _markerIds, _image, _board,
_charucoCorners, _charucoIds);
}
// to return a charuco corner, its closest aruco markers should have been detected
return _filterCornersWithoutMinMarkers(_board, _charucoCorners, _charucoIds, _markerIds,
minMarkers, _charucoCorners, _charucoIds);
}
/**
*/
void drawDetectedCornersCharuco(InputOutputArray _image, InputArray _charucoCorners,
InputArray _charucoIds, Scalar cornerColor) {
CV_Assert(_image.getMat().total() != 0 &&
(_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
CV_Assert((_charucoCorners.getMat().total() == _charucoIds.getMat().total()) ||
_charucoIds.getMat().total() == 0);
unsigned int nCorners = (unsigned int)_charucoCorners.getMat().total();
for(unsigned int i = 0; i < nCorners; i++) {
Point2f corner = _charucoCorners.getMat().at< Point2f >(i);
// draw first corner mark
rectangle(_image, corner - Point2f(3, 3), corner + Point2f(3, 3), cornerColor, 1, LINE_AA);
// draw ID
if(_charucoIds.total() != 0) {
int id = _charucoIds.getMat().at< int >(i);
stringstream s;
s << "id=" << id;
putText(_image, s.str(), corner + Point2f(5, -5), FONT_HERSHEY_SIMPLEX, 0.5,
cornerColor, 2);
}
}
}
/**
* Check if a set of 3d points are enough for calibration. Z coordinate is ignored.
* Only axis paralel lines are considered
*/
static bool _arePointsEnoughForPoseEstimation(const vector< Point3f > &points) {
if(points.size() < 4) return false;
vector< double > sameXValue; // different x values in points
vector< int > sameXCounter; // number of points with the x value in sameXValue
for(unsigned int i = 0; i < points.size(); i++) {
bool found = false;
for(unsigned int j = 0; j < sameXValue.size(); j++) {
if(sameXValue[j] == points[i].x) {
found = true;
sameXCounter[j]++;
}
}
if(!found) {
sameXValue.push_back(points[i].x);
sameXCounter.push_back(1);
}
}
// count how many x values has more than 2 points
int moreThan2 = 0;
for(unsigned int i = 0; i < sameXCounter.size(); i++) {
if(sameXCounter[i] >= 2) moreThan2++;
}
// if we have more than 1 two xvalues with more than 2 points, calibration is ok
if(moreThan2 > 1)
return true;
else
return false;
}
/**
*/
bool estimatePoseCharucoBoard(InputArray _charucoCorners, InputArray _charucoIds,
const Ptr<CharucoBoard> &_board, InputArray _cameraMatrix, InputArray _distCoeffs,
OutputArray _rvec, OutputArray _tvec, bool useExtrinsicGuess) {
CV_Assert((_charucoCorners.getMat().total() == _charucoIds.getMat().total()));
// need, at least, 4 corners
if(_charucoIds.getMat().total() < 4) return false;
vector< Point3f > objPoints;
objPoints.reserve(_charucoIds.getMat().total());
for(unsigned int i = 0; i < _charucoIds.getMat().total(); i++) {
int currId = _charucoIds.getMat().at< int >(i);
CV_Assert(currId >= 0 && currId < (int)_board->chessboardCorners.size());
objPoints.push_back(_board->chessboardCorners[currId]);
}
// points need to be in different lines, check if detected points are enough
if(!_arePointsEnoughForPoseEstimation(objPoints)) return false;
solvePnP(objPoints, _charucoCorners, _cameraMatrix, _distCoeffs, _rvec, _tvec, useExtrinsicGuess);
return true;
}
/**
*/
double calibrateCameraCharuco(InputArrayOfArrays _charucoCorners, InputArrayOfArrays _charucoIds,
const Ptr<CharucoBoard> &_board, Size imageSize,
InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs,
OutputArray _stdDeviationsIntrinsics,
OutputArray _stdDeviationsExtrinsics,
OutputArray _perViewErrors,
int flags, TermCriteria criteria) {
CV_Assert(_charucoIds.total() > 0 && (_charucoIds.total() == _charucoCorners.total()));
// Join object points of charuco corners in a single vector for calibrateCamera() function
vector< vector< Point3f > > allObjPoints;
allObjPoints.resize(_charucoIds.total());
for(unsigned int i = 0; i < _charucoIds.total(); i++) {
unsigned int nCorners = (unsigned int)_charucoIds.getMat(i).total();
CV_Assert(nCorners > 0 && nCorners == _charucoCorners.getMat(i).total());
allObjPoints[i].reserve(nCorners);
for(unsigned int j = 0; j < nCorners; j++) {
int pointId = _charucoIds.getMat(i).at< int >(j);
CV_Assert(pointId >= 0 && pointId < (int)_board->chessboardCorners.size());
allObjPoints[i].push_back(_board->chessboardCorners[pointId]);
}
}
return calibrateCamera(allObjPoints, _charucoCorners, imageSize, _cameraMatrix, _distCoeffs,
_rvecs, _tvecs, _stdDeviationsIntrinsics, _stdDeviationsExtrinsics,
_perViewErrors, flags, criteria);
}
/**
*/
double calibrateCameraCharuco(InputArrayOfArrays _charucoCorners, InputArrayOfArrays _charucoIds,
const Ptr<CharucoBoard> &_board, Size imageSize,
InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, int flags,
TermCriteria criteria) {
return calibrateCameraCharuco(_charucoCorners, _charucoIds, _board, imageSize, _cameraMatrix, _distCoeffs, _rvecs,
_tvecs, noArray(), noArray(), noArray(), flags, criteria);
}
/**
*/
void detectCharucoDiamond(InputArray _image, InputArrayOfArrays _markerCorners,
InputArray _markerIds, float squareMarkerLengthRate,
OutputArrayOfArrays _diamondCorners, OutputArray _diamondIds,
InputArray _cameraMatrix, InputArray _distCoeffs) {
CV_Assert(_markerIds.total() > 0 && _markerIds.total() == _markerCorners.total());
const float minRepDistanceRate = 1.302455f;
// create Charuco board layout for diamond (3x3 layout)
Ptr<Dictionary> dict = getPredefinedDictionary(PREDEFINED_DICTIONARY_NAME(0));
Ptr<CharucoBoard> _charucoDiamondLayout = CharucoBoard::create(3, 3, squareMarkerLengthRate, 1., dict);
vector< vector< Point2f > > diamondCorners;
vector< Vec4i > diamondIds;
// stores if the detected markers have been assigned or not to a diamond
vector< bool > assigned(_markerIds.total(), false);
if(_markerIds.total() < 4) return; // a diamond need at least 4 markers
// convert input image to grey
Mat grey;
if(_image.getMat().type() == CV_8UC3)
cvtColor(_image.getMat(), grey, COLOR_BGR2GRAY);
else
_image.getMat().copyTo(grey);
// for each of the detected markers, try to find a diamond
for(unsigned int i = 0; i < _markerIds.total(); i++) {
if(assigned[i]) continue;
// calculate marker perimeter
float perimeterSq = 0;
Mat corners = _markerCorners.getMat(i);
for(int c = 0; c < 4; c++) {
Point2f edge = corners.at< Point2f >(c) - corners.at< Point2f >((c + 1) % 4);
perimeterSq += edge.x*edge.x + edge.y*edge.y;
}
// maximum reprojection error relative to perimeter
float minRepDistance = sqrt(perimeterSq) * minRepDistanceRate;
int currentId = _markerIds.getMat().at< int >(i);
// prepare data to call refineDetectedMarkers()
// detected markers (only the current one)
vector< Mat > currentMarker;
vector< int > currentMarkerId;
currentMarker.push_back(_markerCorners.getMat(i));
currentMarkerId.push_back(currentId);
// marker candidates (the rest of markers if they have not been assigned)
vector< Mat > candidates;
vector< int > candidatesIdxs;
for(unsigned int k = 0; k < assigned.size(); k++) {
if(k == i) continue;
if(!assigned[k]) {
candidates.push_back(_markerCorners.getMat(k));
candidatesIdxs.push_back(k);
}
}
if(candidates.size() < 3) break; // we need at least 3 free markers
// modify charuco layout id to make sure all the ids are different than current id
for(int k = 1; k < 4; k++)
_charucoDiamondLayout->ids[k] = currentId + 1 + k;
// current id is assigned to [0], so it is the marker on the top
_charucoDiamondLayout->ids[0] = currentId;
// try to find the rest of markers in the diamond
vector< int > acceptedIdxs;
Ptr<Board> _b = _charucoDiamondLayout.staticCast<Board>();
aruco::refineDetectedMarkers(grey, _b,
currentMarker, currentMarkerId,
candidates, noArray(), noArray(), minRepDistance, -1, false,
acceptedIdxs);
// if found, we have a diamond
if(currentMarker.size() == 4) {
assigned[i] = true;
// calculate diamond id, acceptedIdxs array indicates the markers taken from candidates
// array
Vec4i markerId;
markerId[0] = currentId;
for(int k = 1; k < 4; k++) {
int currentMarkerIdx = candidatesIdxs[acceptedIdxs[k - 1]];
markerId[k] = _markerIds.getMat().at< int >(currentMarkerIdx);
assigned[currentMarkerIdx] = true;
}
// interpolate the charuco corners of the diamond
vector< Point2f > currentMarkerCorners;
Mat aux;
interpolateCornersCharuco(currentMarker, currentMarkerId, grey, _charucoDiamondLayout,
currentMarkerCorners, aux, _cameraMatrix, _distCoeffs);
// if everything is ok, save the diamond
if(currentMarkerCorners.size() > 0) {
// reorder corners
vector< Point2f > currentMarkerCornersReorder;
currentMarkerCornersReorder.resize(4);
currentMarkerCornersReorder[0] = currentMarkerCorners[2];
currentMarkerCornersReorder[1] = currentMarkerCorners[3];
currentMarkerCornersReorder[2] = currentMarkerCorners[1];
currentMarkerCornersReorder[3] = currentMarkerCorners[0];
diamondCorners.push_back(currentMarkerCornersReorder);
diamondIds.push_back(markerId);
}
}
}
if(diamondIds.size() > 0) {
// parse output
Mat(diamondIds).copyTo(_diamondIds);
_diamondCorners.create((int)diamondCorners.size(), 1, CV_32FC2);
for(unsigned int i = 0; i < diamondCorners.size(); i++) {
_diamondCorners.create(4, 1, CV_32FC2, i, true);
for(int j = 0; j < 4; j++) {
_diamondCorners.getMat(i).at< Point2f >(j) = diamondCorners[i][j];
}
}
}
}
/**
*/
void drawCharucoDiamond(const Ptr<Dictionary> &dictionary, Vec4i ids, int squareLength, int markerLength,
OutputArray _img, int marginSize, int borderBits) {
CV_Assert(squareLength > 0 && markerLength > 0 && squareLength > markerLength);
CV_Assert(marginSize >= 0 && borderBits > 0);
// create a charuco board similar to a charuco marker and print it
Ptr<CharucoBoard> board =
CharucoBoard::create(3, 3, (float)squareLength, (float)markerLength, dictionary);
// assign the charuco marker ids
for(int i = 0; i < 4; i++)
board->ids[i] = ids[i];
Size outSize(3 * squareLength + 2 * marginSize, 3 * squareLength + 2 * marginSize);
board->draw(outSize, _img, marginSize, borderBits);
}
/**
*/
void drawDetectedDiamonds(InputOutputArray _image, InputArrayOfArrays _corners,
InputArray _ids, Scalar borderColor) {
CV_Assert(_image.getMat().total() != 0 &&
(_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
CV_Assert((_corners.total() == _ids.total()) || _ids.total() == 0);
// calculate colors
Scalar textColor, cornerColor;
textColor = cornerColor = borderColor;
swap(textColor.val[0], textColor.val[1]); // text color just sawp G and R
swap(cornerColor.val[1], cornerColor.val[2]); // corner color just sawp G and B
int nMarkers = (int)_corners.total();
for(int i = 0; i < nMarkers; i++) {
Mat currentMarker = _corners.getMat(i);
CV_Assert(currentMarker.total() == 4 && currentMarker.type() == CV_32FC2);
// draw marker sides
for(int j = 0; j < 4; j++) {
Point2f p0, p1;
p0 = currentMarker.at< Point2f >(j);
p1 = currentMarker.at< Point2f >((j + 1) % 4);
line(_image, p0, p1, borderColor, 1);
}
// draw first corner mark
rectangle(_image, currentMarker.at< Point2f >(0) - Point2f(3, 3),
currentMarker.at< Point2f >(0) + Point2f(3, 3), cornerColor, 1, LINE_AA);
// draw id composed by four numbers
if(_ids.total() != 0) {
Point2f cent(0, 0);
for(int p = 0; p < 4; p++)
cent += currentMarker.at< Point2f >(p);
cent = cent / 4.;
stringstream s;
s << "id=" << _ids.getMat().at< Vec4i >(i);
putText(_image, s.str(), cent, FONT_HERSHEY_SIMPLEX, 0.5, textColor, 2);
}
}
}
}
}