charuco.cpp 37.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.

                          License Agreement
               For Open Source Computer Vision Library
                       (3-clause BSD License)

Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

  * Neither the names of the copyright holders nor the names of the contributors
    may be used to endorse or promote products derived from this software
    without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/

#include "precomp.hpp"
#include "opencv2/aruco/charuco.hpp"
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>


namespace cv {
namespace aruco {

using namespace std;



/**
 */
void CharucoBoard::draw(Size outSize, OutputArray _img, int marginSize, int borderBits) {

    CV_Assert(outSize.area() > 0);
    CV_Assert(marginSize >= 0);

    _img.create(outSize, CV_8UC1);
    _img.setTo(255);
    Mat out = _img.getMat();
    Mat noMarginsImg =
        out.colRange(marginSize, out.cols - marginSize).rowRange(marginSize, out.rows - marginSize);

    double totalLengthX, totalLengthY;
    totalLengthX = _squareLength * _squaresX;
    totalLengthY = _squareLength * _squaresY;

    // proportional transformation
    double xReduction = totalLengthX / double(noMarginsImg.cols);
    double yReduction = totalLengthY / double(noMarginsImg.rows);

    // determine the zone where the chessboard is placed
    Mat chessboardZoneImg;
    if(xReduction > yReduction) {
        int nRows = int(totalLengthY / xReduction);
        int rowsMargins = (noMarginsImg.rows - nRows) / 2;
        chessboardZoneImg = noMarginsImg.rowRange(rowsMargins, noMarginsImg.rows - rowsMargins);
    } else {
        int nCols = int(totalLengthX / yReduction);
        int colsMargins = (noMarginsImg.cols - nCols) / 2;
        chessboardZoneImg = noMarginsImg.colRange(colsMargins, noMarginsImg.cols - colsMargins);
    }

    // determine the margins to draw only the markers
    // take the minimum just to be sure
    double squareSizePixels = min(double(chessboardZoneImg.cols) / double(_squaresX),
                                  double(chessboardZoneImg.rows) / double(_squaresY));

    double diffSquareMarkerLength = (_squareLength - _markerLength) / 2;
    int diffSquareMarkerLengthPixels =
        int(diffSquareMarkerLength * squareSizePixels / _squareLength);

    // draw markers
    Mat markersImg;
    aruco::_drawPlanarBoardImpl(this, chessboardZoneImg.size(), markersImg,
                                diffSquareMarkerLengthPixels, borderBits);

    markersImg.copyTo(chessboardZoneImg);

    // now draw black squares
    for(int y = 0; y < _squaresY; y++) {
        for(int x = 0; x < _squaresX; x++) {

            if(y % 2 != x % 2) continue; // white corner, dont do anything

            double startX, startY;
            startX = squareSizePixels * double(x);
            startY = double(chessboardZoneImg.rows) - squareSizePixels * double(y + 1);

            Mat squareZone = chessboardZoneImg.rowRange(int(startY), int(startY + squareSizePixels))
                                 .colRange(int(startX), int(startX + squareSizePixels));

            squareZone.setTo(0);
        }
    }
}



/**
 */
Ptr<CharucoBoard> CharucoBoard::create(int squaresX, int squaresY, float squareLength,
                                  float markerLength, const Ptr<Dictionary> &dictionary) {

    CV_Assert(squaresX > 1 && squaresY > 1 && markerLength > 0 && squareLength > markerLength);
    Ptr<CharucoBoard> res = makePtr<CharucoBoard>();

    res->_squaresX = squaresX;
    res->_squaresY = squaresY;
    res->_squareLength = squareLength;
    res->_markerLength = markerLength;
    res->dictionary = dictionary;

    float diffSquareMarkerLength = (squareLength - markerLength) / 2;

    // calculate Board objPoints
    for(int y = squaresY - 1; y >= 0; y--) {
        for(int x = 0; x < squaresX; x++) {

            if(y % 2 == x % 2) continue; // black corner, no marker here

            vector< Point3f > corners;
            corners.resize(4);
            corners[0] = Point3f(x * squareLength + diffSquareMarkerLength,
                                 y * squareLength + diffSquareMarkerLength + markerLength, 0);
            corners[1] = corners[0] + Point3f(markerLength, 0, 0);
            corners[2] = corners[0] + Point3f(markerLength, -markerLength, 0);
            corners[3] = corners[0] + Point3f(0, -markerLength, 0);
            res->objPoints.push_back(corners);
            // first ids in dictionary
            int nextId = (int)res->ids.size();
            res->ids.push_back(nextId);
        }
    }

    // now fill chessboardCorners
    for(int y = 0; y < squaresY - 1; y++) {
        for(int x = 0; x < squaresX - 1; x++) {
            Point3f corner;
            corner.x = (x + 1) * squareLength;
            corner.y = (y + 1) * squareLength;
            corner.z = 0;
            res->chessboardCorners.push_back(corner);
        }
    }

    res->_getNearestMarkerCorners();

    return res;
}



/**
  * Fill nearestMarkerIdx and nearestMarkerCorners arrays
  */
void CharucoBoard::_getNearestMarkerCorners() {

    nearestMarkerIdx.resize(chessboardCorners.size());
    nearestMarkerCorners.resize(chessboardCorners.size());

    unsigned int nMarkers = (unsigned int)ids.size();
    unsigned int nCharucoCorners = (unsigned int)chessboardCorners.size();
    for(unsigned int i = 0; i < nCharucoCorners; i++) {
        double minDist = -1; // distance of closest markers
        Point3f charucoCorner = chessboardCorners[i];
        for(unsigned int j = 0; j < nMarkers; j++) {
            // calculate distance from marker center to charuco corner
            Point3f center = Point3f(0, 0, 0);
            for(unsigned int k = 0; k < 4; k++)
                center += objPoints[j][k];
            center /= 4.;
            double sqDistance;
            Point3f distVector = charucoCorner - center;
            sqDistance = distVector.x * distVector.x + distVector.y * distVector.y;
            if(j == 0 || fabs(sqDistance - minDist) < 0.0001) {
                // if same minimum distance (or first iteration), add to nearestMarkerIdx vector
                nearestMarkerIdx[i].push_back(j);
                minDist = sqDistance;
            } else if(sqDistance < minDist) {
                // if finding a closest marker to the charuco corner
                nearestMarkerIdx[i].clear(); // remove any previous added marker
                nearestMarkerIdx[i].push_back(j); // add the new closest marker index
                minDist = sqDistance;
            }
        }

        // for each of the closest markers, search the marker corner index closer
        // to the charuco corner
        for(unsigned int j = 0; j < nearestMarkerIdx[i].size(); j++) {
            nearestMarkerCorners[i].resize(nearestMarkerIdx[i].size());
            double minDistCorner = -1;
            for(unsigned int k = 0; k < 4; k++) {
                double sqDistance;
                Point3f distVector = charucoCorner - objPoints[nearestMarkerIdx[i][j]][k];
                sqDistance = distVector.x * distVector.x + distVector.y * distVector.y;
                if(k == 0 || sqDistance < minDistCorner) {
                    // if this corner is closer to the charuco corner, assing its index
                    // to nearestMarkerCorners
                    minDistCorner = sqDistance;
                    nearestMarkerCorners[i][j] = k;
                }
            }
        }
    }
}


/**
  * Remove charuco corners if any of their minMarkers closest markers has not been detected
  */
static int _filterCornersWithoutMinMarkers(const Ptr<CharucoBoard> &_board,
                                                    InputArray _allCharucoCorners,
                                                    InputArray _allCharucoIds,
                                                    InputArray _allArucoIds, int minMarkers,
                                                    OutputArray _filteredCharucoCorners,
                                                    OutputArray _filteredCharucoIds) {

    CV_Assert(minMarkers >= 0 && minMarkers <= 2);

    vector< Point2f > filteredCharucoCorners;
    vector< int > filteredCharucoIds;
    // for each charuco corner
    for(unsigned int i = 0; i < _allCharucoIds.getMat().total(); i++) {
        int currentCharucoId = _allCharucoIds.getMat().at< int >(i);
        int totalMarkers = 0; // nomber of closest marker detected
        // look for closest markers
        for(unsigned int m = 0; m < _board->nearestMarkerIdx[currentCharucoId].size(); m++) {
            int markerId = _board->ids[_board->nearestMarkerIdx[currentCharucoId][m]];
            bool found = false;
            for(unsigned int k = 0; k < _allArucoIds.getMat().total(); k++) {
                if(_allArucoIds.getMat().at< int >(k) == markerId) {
                    found = true;
                    break;
                }
            }
            if(found) totalMarkers++;
        }
        // if enough markers detected, add the charuco corner to the final list
        if(totalMarkers >= minMarkers) {
            filteredCharucoIds.push_back(currentCharucoId);
            filteredCharucoCorners.push_back(_allCharucoCorners.getMat().at< Point2f >(i));
        }
    }

    // parse output
    Mat(filteredCharucoCorners).copyTo(_filteredCharucoCorners);
    Mat(filteredCharucoIds).copyTo(_filteredCharucoIds);
    return (int)_filteredCharucoIds.total();
}


/**
  * ParallelLoopBody class for the parallelization of the charuco corners subpixel refinement
  * Called from function _selectAndRefineChessboardCorners()
  */
class CharucoSubpixelParallel : public ParallelLoopBody {
    public:
    CharucoSubpixelParallel(const Mat *_grey, vector< Point2f > *_filteredChessboardImgPoints,
                            vector< Size > *_filteredWinSizes, const Ptr<DetectorParameters> &_params)
        : grey(_grey), filteredChessboardImgPoints(_filteredChessboardImgPoints),
          filteredWinSizes(_filteredWinSizes), params(_params) {}

    void operator()(const Range &range) const {
        const int begin = range.start;
        const int end = range.end;

        for(int i = begin; i < end; i++) {
            vector< Point2f > in;
            in.push_back((*filteredChessboardImgPoints)[i]);
            Size winSize = (*filteredWinSizes)[i];
            if(winSize.height == -1 || winSize.width == -1)
                winSize = Size(params->cornerRefinementWinSize, params->cornerRefinementWinSize);

            cornerSubPix(*grey, in, winSize, Size(),
                         TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS,
                                      params->cornerRefinementMaxIterations,
                                      params->cornerRefinementMinAccuracy));

            (*filteredChessboardImgPoints)[i] = in[0];
        }
    }

    private:
    CharucoSubpixelParallel &operator=(const CharucoSubpixelParallel &); // to quiet MSVC

    const Mat *grey;
    vector< Point2f > *filteredChessboardImgPoints;
    vector< Size > *filteredWinSizes;
    const Ptr<DetectorParameters> &params;
};




/**
  * @brief From all projected chessboard corners, select those inside the image and apply subpixel
  * refinement. Returns number of valid corners.
  */
static int _selectAndRefineChessboardCorners(InputArray _allCorners, InputArray _image,
                                                      OutputArray _selectedCorners,
                                                      OutputArray _selectedIds,
                                                      const vector< Size > &winSizes) {

    const int minDistToBorder = 2; // minimum distance of the corner to the image border
    // remaining corners, ids and window refinement sizes after removing corners outside the image
    vector< Point2f > filteredChessboardImgPoints;
    vector< Size > filteredWinSizes;
    vector< int > filteredIds;

    // filter corners outside the image
    Rect innerRect(minDistToBorder, minDistToBorder, _image.getMat().cols - 2 * minDistToBorder,
                   _image.getMat().rows - 2 * minDistToBorder);
    for(unsigned int i = 0; i < _allCorners.getMat().total(); i++) {
        if(innerRect.contains(_allCorners.getMat().at< Point2f >(i))) {
            filteredChessboardImgPoints.push_back(_allCorners.getMat().at< Point2f >(i));
            filteredIds.push_back(i);
            filteredWinSizes.push_back(winSizes[i]);
        }
    }

    // if none valid, return 0
    if(filteredChessboardImgPoints.size() == 0) return 0;

    // corner refinement, first convert input image to grey
    Mat grey;
    if(_image.getMat().type() == CV_8UC3)
        cvtColor(_image.getMat(), grey, COLOR_BGR2GRAY);
    else
        _image.getMat().copyTo(grey);

    const Ptr<DetectorParameters> params = DetectorParameters::create(); // use default params for corner refinement

    //// For each of the charuco corners, apply subpixel refinement using its correspondind winSize
    // for(unsigned int i=0; i<filteredChessboardImgPoints.size(); i++) {
    //    vector<Point2f> in;
    //    in.push_back(filteredChessboardImgPoints[i]);
    //    Size winSize = filteredWinSizes[i];
    //    if(winSize.height == -1 || winSize.width == -1)
    //        winSize = Size(params.cornerRefinementWinSize, params.cornerRefinementWinSize);
    //    cornerSubPix(grey, in, winSize, Size(),
    //                 TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS,
    //                              params->cornerRefinementMaxIterations,
    //                              params->cornerRefinementMinAccuracy));
    //    filteredChessboardImgPoints[i] = in[0];
    //}

    // this is the parallel call for the previous commented loop (result is equivalent)
    parallel_for_(
        Range(0, (int)filteredChessboardImgPoints.size()),
        CharucoSubpixelParallel(&grey, &filteredChessboardImgPoints, &filteredWinSizes, params));

    // parse output
    Mat(filteredChessboardImgPoints).copyTo(_selectedCorners);
    Mat(filteredIds).copyTo(_selectedIds);
    return (int)filteredChessboardImgPoints.size();
}


/**
  * Calculate the maximum window sizes for corner refinement for each charuco corner based on the
  * distance to their closest markers
  */
static void _getMaximumSubPixWindowSizes(InputArrayOfArrays markerCorners, InputArray markerIds,
                                         InputArray charucoCorners, const Ptr<CharucoBoard> &board,
                                         vector< Size > &sizes) {

    unsigned int nCharucoCorners = (unsigned int)charucoCorners.getMat().total();
    sizes.resize(nCharucoCorners, Size(-1, -1));

    for(unsigned int i = 0; i < nCharucoCorners; i++) {
        if(charucoCorners.getMat().at< Point2f >(i) == Point2f(-1, -1)) continue;
        if(board->nearestMarkerIdx[i].size() == 0) continue;

        double minDist = -1;
        int counter = 0;

        // calculate the distance to each of the closest corner of each closest marker
        for(unsigned int j = 0; j < board->nearestMarkerIdx[i].size(); j++) {
            // find marker
            int markerId = board->ids[board->nearestMarkerIdx[i][j]];
            int markerIdx = -1;
            for(unsigned int k = 0; k < markerIds.getMat().total(); k++) {
                if(markerIds.getMat().at< int >(k) == markerId) {
                    markerIdx = k;
                    break;
                }
            }
            if(markerIdx == -1) continue;
            Point2f markerCorner =
                markerCorners.getMat(markerIdx).at< Point2f >(board->nearestMarkerCorners[i][j]);
            Point2f charucoCorner = charucoCorners.getMat().at< Point2f >(i);
            double dist = norm(markerCorner - charucoCorner);
            if(minDist == -1) minDist = dist; // if first distance, just assign it
            minDist = min(dist, minDist);
            counter++;
        }

        // if this is the first closest marker, dont do anything
        if(counter == 0)
            continue;
        else {
            // else, calculate the maximum window size
            int winSizeInt = int(minDist - 2); // remove 2 pixels for safety
            if(winSizeInt < 1) winSizeInt = 1; // minimum size is 1
            if(winSizeInt > 10) winSizeInt = 10; // maximum size is 10
            sizes[i] = Size(winSizeInt, winSizeInt);
        }
    }
}



/**
  * Interpolate charuco corners using approximated pose estimation
  */
static int _interpolateCornersCharucoApproxCalib(InputArrayOfArrays _markerCorners,
                                                 InputArray _markerIds, InputArray _image,
                                                 const Ptr<CharucoBoard> &_board,
                                                 InputArray _cameraMatrix, InputArray _distCoeffs,
                                                 OutputArray _charucoCorners,
                                                 OutputArray _charucoIds) {

    CV_Assert(_image.getMat().channels() == 1 || _image.getMat().channels() == 3);
    CV_Assert(_markerCorners.total() == _markerIds.getMat().total() &&
              _markerIds.getMat().total() > 0);

    // approximated pose estimation using marker corners
    Mat approximatedRvec, approximatedTvec;
    int detectedBoardMarkers;
    Ptr<Board> _b = _board.staticCast<Board>();
    detectedBoardMarkers =
        aruco::estimatePoseBoard(_markerCorners, _markerIds, _b,
                                 _cameraMatrix, _distCoeffs, approximatedRvec, approximatedTvec);

    if(detectedBoardMarkers == 0) return 0;

    // project chessboard corners
    vector< Point2f > allChessboardImgPoints;

    projectPoints(_board->chessboardCorners, approximatedRvec, approximatedTvec, _cameraMatrix,
                  _distCoeffs, allChessboardImgPoints);


    // calculate maximum window sizes for subpixel refinement. The size is limited by the distance
    // to the closes marker corner to avoid erroneous displacements to marker corners
    vector< Size > subPixWinSizes;
    _getMaximumSubPixWindowSizes(_markerCorners, _markerIds, allChessboardImgPoints, _board,
                                 subPixWinSizes);

    // filter corners outside the image and subpixel-refine charuco corners
    return _selectAndRefineChessboardCorners(allChessboardImgPoints, _image, _charucoCorners,
                                             _charucoIds, subPixWinSizes);
}



/**
  * Interpolate charuco corners using local homography
  */
static int _interpolateCornersCharucoLocalHom(InputArrayOfArrays _markerCorners,
                                              InputArray _markerIds, InputArray _image,
                                              const Ptr<CharucoBoard> &_board,
                                              OutputArray _charucoCorners,
                                              OutputArray _charucoIds) {

    CV_Assert(_image.getMat().channels() == 1 || _image.getMat().channels() == 3);
    CV_Assert(_markerCorners.total() == _markerIds.getMat().total() &&
              _markerIds.getMat().total() > 0);

    unsigned int nMarkers = (unsigned int)_markerIds.getMat().total();

    // calculate local homographies for each marker
    vector< Mat > transformations;
    transformations.resize(nMarkers);
    for(unsigned int i = 0; i < nMarkers; i++) {
        vector< Point2f > markerObjPoints2D;
        int markerId = _markerIds.getMat().at< int >(i);
        vector< int >::const_iterator it = find(_board->ids.begin(), _board->ids.end(), markerId);
        if(it == _board->ids.end()) continue;
        int boardIdx = (int)std::distance<std::vector<int>::const_iterator>(_board->ids.begin(), it);
        markerObjPoints2D.resize(4);
        for(unsigned int j = 0; j < 4; j++)
            markerObjPoints2D[j] =
                Point2f(_board->objPoints[boardIdx][j].x, _board->objPoints[boardIdx][j].y);

        transformations[i] = getPerspectiveTransform(markerObjPoints2D, _markerCorners.getMat(i));
    }

    unsigned int nCharucoCorners = (unsigned int)_board->chessboardCorners.size();
    vector< Point2f > allChessboardImgPoints(nCharucoCorners, Point2f(-1, -1));

    // for each charuco corner, calculate its interpolation position based on the closest markers
    // homographies
    for(unsigned int i = 0; i < nCharucoCorners; i++) {
        Point2f objPoint2D = Point2f(_board->chessboardCorners[i].x, _board->chessboardCorners[i].y);

        vector< Point2f > interpolatedPositions;
        for(unsigned int j = 0; j < _board->nearestMarkerIdx[i].size(); j++) {
            int markerId = _board->ids[_board->nearestMarkerIdx[i][j]];
            int markerIdx = -1;
            for(unsigned int k = 0; k < _markerIds.getMat().total(); k++) {
                if(_markerIds.getMat().at< int >(k) == markerId) {
                    markerIdx = k;
                    break;
                }
            }
            if(markerIdx != -1) {
                vector< Point2f > in, out;
                in.push_back(objPoint2D);
                perspectiveTransform(in, out, transformations[markerIdx]);
                interpolatedPositions.push_back(out[0]);
            }
        }

        // none of the closest markers detected
        if(interpolatedPositions.size() == 0) continue;

        // more than one closest marker detected, take middle point
        if(interpolatedPositions.size() > 1) {
            allChessboardImgPoints[i] = (interpolatedPositions[0] + interpolatedPositions[1]) / 2.;
        }
        // a single closest marker detected
        else allChessboardImgPoints[i] = interpolatedPositions[0];
    }

    // calculate maximum window sizes for subpixel refinement. The size is limited by the distance
    // to the closes marker corner to avoid erroneous displacements to marker corners
    vector< Size > subPixWinSizes;
    _getMaximumSubPixWindowSizes(_markerCorners, _markerIds, allChessboardImgPoints, _board,
                                 subPixWinSizes);


    // filter corners outside the image and subpixel-refine charuco corners
    return _selectAndRefineChessboardCorners(allChessboardImgPoints, _image, _charucoCorners,
                                             _charucoIds, subPixWinSizes);
}



/**
  */
int interpolateCornersCharuco(InputArrayOfArrays _markerCorners, InputArray _markerIds,
                              InputArray _image, const Ptr<CharucoBoard> &_board,
                              OutputArray _charucoCorners, OutputArray _charucoIds,
                              InputArray _cameraMatrix, InputArray _distCoeffs, int minMarkers) {

    // if camera parameters are avaible, use approximated calibration
    if(_cameraMatrix.total() != 0) {
        _interpolateCornersCharucoApproxCalib(_markerCorners, _markerIds, _image, _board,
                                                     _cameraMatrix, _distCoeffs, _charucoCorners,
                                                     _charucoIds);
    }
    // else use local homography
    else {
        _interpolateCornersCharucoLocalHom(_markerCorners, _markerIds, _image, _board,
                                                  _charucoCorners, _charucoIds);
    }

    // to return a charuco corner, its closest aruco markers should have been detected
    return _filterCornersWithoutMinMarkers(_board, _charucoCorners, _charucoIds, _markerIds,
                                           minMarkers, _charucoCorners, _charucoIds);
}



/**
  */
void drawDetectedCornersCharuco(InputOutputArray _image, InputArray _charucoCorners,
                                InputArray _charucoIds, Scalar cornerColor) {

    CV_Assert(_image.getMat().total() != 0 &&
              (_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
    CV_Assert((_charucoCorners.getMat().total() == _charucoIds.getMat().total()) ||
              _charucoIds.getMat().total() == 0);

    unsigned int nCorners = (unsigned int)_charucoCorners.getMat().total();
    for(unsigned int i = 0; i < nCorners; i++) {
        Point2f corner = _charucoCorners.getMat().at< Point2f >(i);

        // draw first corner mark
        rectangle(_image, corner - Point2f(3, 3), corner + Point2f(3, 3), cornerColor, 1, LINE_AA);

        // draw ID
        if(_charucoIds.total() != 0) {
            int id = _charucoIds.getMat().at< int >(i);
            stringstream s;
            s << "id=" << id;
            putText(_image, s.str(), corner + Point2f(5, -5), FONT_HERSHEY_SIMPLEX, 0.5,
                    cornerColor, 2);
        }
    }
}


/**
  * Check if a set of 3d points are enough for calibration. Z coordinate is ignored.
  * Only axis paralel lines are considered
  */
static bool _arePointsEnoughForPoseEstimation(const vector< Point3f > &points) {

    if(points.size() < 4) return false;

    vector< double > sameXValue; // different x values in points
    vector< int > sameXCounter;  // number of points with the x value in sameXValue
    for(unsigned int i = 0; i < points.size(); i++) {
        bool found = false;
        for(unsigned int j = 0; j < sameXValue.size(); j++) {
            if(sameXValue[j] == points[i].x) {
                found = true;
                sameXCounter[j]++;
            }
        }
        if(!found) {
            sameXValue.push_back(points[i].x);
            sameXCounter.push_back(1);
        }
    }

    // count how many x values has more than 2 points
    int moreThan2 = 0;
    for(unsigned int i = 0; i < sameXCounter.size(); i++) {
        if(sameXCounter[i] >= 2) moreThan2++;
    }

    // if we have more than 1 two xvalues with more than 2 points, calibration is ok
    if(moreThan2 > 1)
        return true;
    else
        return false;
}


/**
  */
bool estimatePoseCharucoBoard(InputArray _charucoCorners, InputArray _charucoIds,
                              const Ptr<CharucoBoard> &_board, InputArray _cameraMatrix, InputArray _distCoeffs,
                              OutputArray _rvec, OutputArray _tvec, bool useExtrinsicGuess) {

    CV_Assert((_charucoCorners.getMat().total() == _charucoIds.getMat().total()));

    // need, at least, 4 corners
    if(_charucoIds.getMat().total() < 4) return false;

    vector< Point3f > objPoints;
    objPoints.reserve(_charucoIds.getMat().total());
    for(unsigned int i = 0; i < _charucoIds.getMat().total(); i++) {
        int currId = _charucoIds.getMat().at< int >(i);
        CV_Assert(currId >= 0 && currId < (int)_board->chessboardCorners.size());
        objPoints.push_back(_board->chessboardCorners[currId]);
    }

    // points need to be in different lines, check if detected points are enough
    if(!_arePointsEnoughForPoseEstimation(objPoints)) return false;

    solvePnP(objPoints, _charucoCorners, _cameraMatrix, _distCoeffs, _rvec, _tvec, useExtrinsicGuess);

    return true;
}




/**
  */
double calibrateCameraCharuco(InputArrayOfArrays _charucoCorners, InputArrayOfArrays _charucoIds,
                              const Ptr<CharucoBoard> &_board, Size imageSize,
                              InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
                              OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs,
                              OutputArray _stdDeviationsIntrinsics,
                              OutputArray _stdDeviationsExtrinsics,
                              OutputArray _perViewErrors,
                              int flags, TermCriteria criteria) {

    CV_Assert(_charucoIds.total() > 0 && (_charucoIds.total() == _charucoCorners.total()));

    // Join object points of charuco corners in a single vector for calibrateCamera() function
    vector< vector< Point3f > > allObjPoints;
    allObjPoints.resize(_charucoIds.total());
    for(unsigned int i = 0; i < _charucoIds.total(); i++) {
        unsigned int nCorners = (unsigned int)_charucoIds.getMat(i).total();
        CV_Assert(nCorners > 0 && nCorners == _charucoCorners.getMat(i).total());
        allObjPoints[i].reserve(nCorners);

        for(unsigned int j = 0; j < nCorners; j++) {
            int pointId = _charucoIds.getMat(i).at< int >(j);
            CV_Assert(pointId >= 0 && pointId < (int)_board->chessboardCorners.size());
            allObjPoints[i].push_back(_board->chessboardCorners[pointId]);
        }
    }

    return calibrateCamera(allObjPoints, _charucoCorners, imageSize, _cameraMatrix, _distCoeffs,
                           _rvecs, _tvecs, _stdDeviationsIntrinsics, _stdDeviationsExtrinsics,
                           _perViewErrors, flags, criteria);
}



/**
 */
double calibrateCameraCharuco(InputArrayOfArrays _charucoCorners, InputArrayOfArrays _charucoIds,
  const Ptr<CharucoBoard> &_board, Size imageSize,
  InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
  OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, int flags,
  TermCriteria criteria) {
    return calibrateCameraCharuco(_charucoCorners, _charucoIds, _board, imageSize, _cameraMatrix, _distCoeffs, _rvecs,
      _tvecs, noArray(), noArray(), noArray(), flags, criteria);
}


/**
 */
void detectCharucoDiamond(InputArray _image, InputArrayOfArrays _markerCorners,
                          InputArray _markerIds, float squareMarkerLengthRate,
                          OutputArrayOfArrays _diamondCorners, OutputArray _diamondIds,
                          InputArray _cameraMatrix, InputArray _distCoeffs) {

    CV_Assert(_markerIds.total() > 0 && _markerIds.total() == _markerCorners.total());

    const float minRepDistanceRate = 1.302455f;

    // create Charuco board layout for diamond (3x3 layout)
    Ptr<Dictionary> dict = getPredefinedDictionary(PREDEFINED_DICTIONARY_NAME(0));
    Ptr<CharucoBoard> _charucoDiamondLayout = CharucoBoard::create(3, 3, squareMarkerLengthRate, 1., dict);


    vector< vector< Point2f > > diamondCorners;
    vector< Vec4i > diamondIds;

    // stores if the detected markers have been assigned or not to a diamond
    vector< bool > assigned(_markerIds.total(), false);
    if(_markerIds.total() < 4) return; // a diamond need at least 4 markers

    // convert input image to grey
    Mat grey;
    if(_image.getMat().type() == CV_8UC3)
        cvtColor(_image.getMat(), grey, COLOR_BGR2GRAY);
    else
        _image.getMat().copyTo(grey);

    // for each of the detected markers, try to find a diamond
    for(unsigned int i = 0; i < _markerIds.total(); i++) {
        if(assigned[i]) continue;

        // calculate marker perimeter
        float perimeterSq = 0;
        Mat corners = _markerCorners.getMat(i);
        for(int c = 0; c < 4; c++) {
          Point2f edge = corners.at< Point2f >(c) - corners.at< Point2f >((c + 1) % 4);
          perimeterSq += edge.x*edge.x + edge.y*edge.y;
        }
        // maximum reprojection error relative to perimeter
        float minRepDistance = sqrt(perimeterSq) * minRepDistanceRate;

        int currentId = _markerIds.getMat().at< int >(i);

        // prepare data to call refineDetectedMarkers()
        // detected markers (only the current one)
        vector< Mat > currentMarker;
        vector< int > currentMarkerId;
        currentMarker.push_back(_markerCorners.getMat(i));
        currentMarkerId.push_back(currentId);

        // marker candidates (the rest of markers if they have not been assigned)
        vector< Mat > candidates;
        vector< int > candidatesIdxs;
        for(unsigned int k = 0; k < assigned.size(); k++) {
            if(k == i) continue;
            if(!assigned[k]) {
                candidates.push_back(_markerCorners.getMat(k));
                candidatesIdxs.push_back(k);
            }
        }
        if(candidates.size() < 3) break; // we need at least 3 free markers

        // modify charuco layout id to make sure all the ids are different than current id
        for(int k = 1; k < 4; k++)
            _charucoDiamondLayout->ids[k] = currentId + 1 + k;
        // current id is assigned to [0], so it is the marker on the top
        _charucoDiamondLayout->ids[0] = currentId;

        // try to find the rest of markers in the diamond
        vector< int > acceptedIdxs;
        Ptr<Board> _b = _charucoDiamondLayout.staticCast<Board>();
        aruco::refineDetectedMarkers(grey, _b,
                                     currentMarker, currentMarkerId,
                                     candidates, noArray(), noArray(), minRepDistance, -1, false,
                                     acceptedIdxs);

        // if found, we have a diamond
        if(currentMarker.size() == 4) {

            assigned[i] = true;

            // calculate diamond id, acceptedIdxs array indicates the markers taken from candidates
            // array
            Vec4i markerId;
            markerId[0] = currentId;
            for(int k = 1; k < 4; k++) {
                int currentMarkerIdx = candidatesIdxs[acceptedIdxs[k - 1]];
                markerId[k] = _markerIds.getMat().at< int >(currentMarkerIdx);
                assigned[currentMarkerIdx] = true;
            }

            // interpolate the charuco corners of the diamond
            vector< Point2f > currentMarkerCorners;
            Mat aux;
            interpolateCornersCharuco(currentMarker, currentMarkerId, grey, _charucoDiamondLayout,
                                      currentMarkerCorners, aux, _cameraMatrix, _distCoeffs);

            // if everything is ok, save the diamond
            if(currentMarkerCorners.size() > 0) {
                // reorder corners
                vector< Point2f > currentMarkerCornersReorder;
                currentMarkerCornersReorder.resize(4);
                currentMarkerCornersReorder[0] = currentMarkerCorners[2];
                currentMarkerCornersReorder[1] = currentMarkerCorners[3];
                currentMarkerCornersReorder[2] = currentMarkerCorners[1];
                currentMarkerCornersReorder[3] = currentMarkerCorners[0];

                diamondCorners.push_back(currentMarkerCornersReorder);
                diamondIds.push_back(markerId);
            }
        }
    }


    if(diamondIds.size() > 0) {
        // parse output
        Mat(diamondIds).copyTo(_diamondIds);

        _diamondCorners.create((int)diamondCorners.size(), 1, CV_32FC2);
        for(unsigned int i = 0; i < diamondCorners.size(); i++) {
            _diamondCorners.create(4, 1, CV_32FC2, i, true);
            for(int j = 0; j < 4; j++) {
                _diamondCorners.getMat(i).at< Point2f >(j) = diamondCorners[i][j];
            }
        }
    }
}




/**
  */
void drawCharucoDiamond(const Ptr<Dictionary> &dictionary, Vec4i ids, int squareLength, int markerLength,
                        OutputArray _img, int marginSize, int borderBits) {

    CV_Assert(squareLength > 0 && markerLength > 0 && squareLength > markerLength);
    CV_Assert(marginSize >= 0 && borderBits > 0);

    // create a charuco board similar to a charuco marker and print it
    Ptr<CharucoBoard> board =
        CharucoBoard::create(3, 3, (float)squareLength, (float)markerLength, dictionary);

    // assign the charuco marker ids
    for(int i = 0; i < 4; i++)
        board->ids[i] = ids[i];

    Size outSize(3 * squareLength + 2 * marginSize, 3 * squareLength + 2 * marginSize);
    board->draw(outSize, _img, marginSize, borderBits);
}


/**
 */
void drawDetectedDiamonds(InputOutputArray _image, InputArrayOfArrays _corners,
                          InputArray _ids, Scalar borderColor) {


    CV_Assert(_image.getMat().total() != 0 &&
              (_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
    CV_Assert((_corners.total() == _ids.total()) || _ids.total() == 0);

    // calculate colors
    Scalar textColor, cornerColor;
    textColor = cornerColor = borderColor;
    swap(textColor.val[0], textColor.val[1]);     // text color just sawp G and R
    swap(cornerColor.val[1], cornerColor.val[2]); // corner color just sawp G and B

    int nMarkers = (int)_corners.total();
    for(int i = 0; i < nMarkers; i++) {
        Mat currentMarker = _corners.getMat(i);
        CV_Assert(currentMarker.total() == 4 && currentMarker.type() == CV_32FC2);

        // draw marker sides
        for(int j = 0; j < 4; j++) {
            Point2f p0, p1;
            p0 = currentMarker.at< Point2f >(j);
            p1 = currentMarker.at< Point2f >((j + 1) % 4);
            line(_image, p0, p1, borderColor, 1);
        }

        // draw first corner mark
        rectangle(_image, currentMarker.at< Point2f >(0) - Point2f(3, 3),
                  currentMarker.at< Point2f >(0) + Point2f(3, 3), cornerColor, 1, LINE_AA);

        // draw id composed by four numbers
        if(_ids.total() != 0) {
            Point2f cent(0, 0);
            for(int p = 0; p < 4; p++)
                cent += currentMarker.at< Point2f >(p);
            cent = cent / 4.;
            stringstream s;
            s << "id=" << _ids.getMat().at< Vec4i >(i);
            putText(_image, s.str(), cent, FONT_HERSHEY_SIMPLEX, 0.5, textColor, 2);
        }
    }
}
}
}