1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Copyright (c) 2009 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// TODO(keir): This code is plain unfinished! Doesn't even compile!
#ifndef LIBMV_MULTIVIEW_FUNDAMENTAL_KERNEL_H_
#define LIBMV_MULTIVIEW_FUNDAMENTAL_KERNEL_H_
#include "libmv/base/vector.h"
#include "libmv/multiview/conditioning.h"
#include "libmv/multiview/two_view_kernel.h"
#include "libmv/numeric/numeric.h"
#include "libmv/logging/logging.h"
namespace libmv {
namespace fundamental {
namespace kernel {
// TODO(keir): Templatize error functions to work with autodiff (only F).
struct SampsonError {
static double Error(const Mat3 &F, const Vec2 &x1, const Vec2 &x2) {
Vec3 x(x1(0), x1(1), 1.0);
Vec3 y(x2(0), x2(1), 1.0);
// See page 287 equation (11.9) of HZ.
Vec3 F_x = F * x;
Vec3 Ft_y = F.transpose() * y;
return Square(y.dot(F_x)) / ( F_x.head<2>().squaredNorm()
+ Ft_y.head<2>().squaredNorm());
}
};
struct SymmetricEpipolarDistanceError {
static double Error(const Mat3 &F, const Vec2 &x1, const Vec2 &x2) {
Vec3 x(x1(0), x1(1), 1.0);
Vec3 y(x2(0), x2(1), 1.0);
// See page 288 equation (11.10) of HZ.
Vec3 F_x = F * x;
Vec3 Ft_y = F.transpose() * y;
return Square(y.dot(F_x)) * ( 1 / F_x.head<2>().squaredNorm()
+ 1 / Ft_y.head<2>().squaredNorm())
/ 4.0; // The divide by 4 is to make this match the sampson distance.
}
};
/**
* Seven-point algorithm for solving for the fundamental matrix from point
* correspondences. See page 281 in HZ, though oddly they use a different
* equation: \f$det(\alpha F_1 + (1-\alpha)F_2) = 0\f$. Since \f$F_1\f$ and
* \f$F2\f$ are projective, there's no need to balance the relative scale.
* Instead, here, the simpler equation is solved: \f$det(F_1 + \alpha F_2) =
* 0\f$.
*
* \see http://www.cs.unc.edu/~marc/tutorial/node55.html
*/
struct SevenPointSolver {
enum { MINIMUM_SAMPLES = 7 };
static void Solve(const Mat &x1, const Mat &x2, vector<Mat3> *F);
};
struct EightPointSolver {
enum { MINIMUM_SAMPLES = 8 };
static void Solve(const Mat &x1, const Mat &x2, vector<Mat3> *Fs);
};
typedef two_view::kernel::Kernel<SevenPointSolver, SampsonError, Mat3>
SevenPointKernel;
typedef two_view::kernel::Kernel<EightPointSolver, SampsonError, Mat3>
EightPointKernel;
typedef two_view::kernel::Kernel<
two_view::kernel::NormalizedSolver<SevenPointSolver, UnnormalizerT>,
SampsonError,
Mat3>
NormalizedSevenPointKernel;
typedef two_view::kernel::Kernel<
two_view::kernel::NormalizedSolver<EightPointSolver, UnnormalizerT>,
SampsonError,
Mat3>
NormalizedEightPointKernel;
// Set the default kernel to normalized 7 point, because it is the fastest (in
// a robust estimation context) and most robust of the above kernels.
typedef NormalizedSevenPointKernel Kernel;
// TODO(keir): Convert this to a solver that enforces the essential
// constraints; in particular det(F) = 0 and the two nonzero singular values
// are equal.
typedef two_view::kernel::Kernel<EightPointSolver,
SampsonError,
Mat3>
EssentialKernel;
/**
* Build a 9 x n matrix from point matches, where each row is equivalent to the
* equation x'T*F*x = 0 for a single correspondence pair (x', x). The domain of
* the matrix is a 9 element vector corresponding to F. In other words, set up
* the linear system
*
* Af = 0,
*
* where f is the F matrix as a 9-vector rather than a 3x3 matrix (row
* major). If the points are well conditioned and there are 8 or more, then
* the nullspace should be rank one. If the nullspace is two dimensional,
* then the rank 2 constraint must be enforced to identify the appropriate F
* matrix.
*
* Note that this does not resize the matrix A; it is expected to have the
* appropriate size already.
*/
template<typename TMatX, typename TMatA>
inline void EncodeEpipolarEquation(const TMatX &x1, const TMatX &x2, TMatA *A) {
for (int i = 0; i < x1.cols(); ++i) {
(*A)(i, 0) = x2(0, i) * x1(0, i); // 0 represents x coords,
(*A)(i, 1) = x2(0, i) * x1(1, i); // 1 represents y coords.
(*A)(i, 2) = x2(0, i);
(*A)(i, 3) = x2(1, i) * x1(0, i);
(*A)(i, 4) = x2(1, i) * x1(1, i);
(*A)(i, 5) = x2(1, i);
(*A)(i, 6) = x1(0, i);
(*A)(i, 7) = x1(1, i);
(*A)(i, 8) = 1.0;
}
}
} // namespace kernel
} // namespace fundamental
} // namespace libmv
#endif // LIBMV_MULTIVIEW_FUNDAMENTAL_KERNEL_H_