1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
This file was part of GSoC Project: Facemark API for OpenCV
Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
Student: Laksono Kurnianggoro
Mentor: Delia Passalacqua
*/
#include "precomp.hpp"
#include "opencv2/face.hpp"
namespace cv {
namespace face {
/*
* Parameters
*/
FacemarkAAM::Params::Params(){
model_filename = "";
m = 200;
n = 10;
n_iter = 50;
verbose = true;
save_model = true;
scales.push_back(1.0);
max_m = 550;
max_n = 136;
texture_max_m = 145;
}
FacemarkAAM::Config::Config(Mat rot, Point2f trans, float scaling,int scale_id){
R = rot.clone();
t = trans;
scale = scaling;
model_scale_idx = scale_id;
}
void FacemarkAAM::Params::read( const cv::FileNode& fn ){
*this = FacemarkAAM::Params();
if (!fn["model_filename"].empty()) fn["model_filename"] >> model_filename;
if (!fn["m"].empty()) fn["m"] >> m;
if (!fn["n"].empty()) fn["n"] >> m;
if (!fn["n_iter"].empty()) fn["n_iter"] >> m;
if (!fn["verbose"].empty()) fn["verbose"] >> m;
if (!fn["max_m"].empty()) fn["max_m"] >> m;
if (!fn["max_n"].empty()) fn["max_n"] >> m;
if (!fn["texture_max_m"].empty()) fn["texture_max_m"] >> m;
if (!fn["scales"].empty()) fn["scales"] >> m;
}
void FacemarkAAM::Params::write( cv::FileStorage& fs ) const{
fs << "model_filename" << model_filename;
fs << "m" << m;
fs << "n" << n;
fs << "n_iter" << n_iter;
fs << "verbose" << verbose;
fs << "max_m" << verbose;
fs << "max_n" << verbose;
fs << "texture_max_m" << verbose;
fs << "scales" << verbose;
}
class FacemarkAAMImpl : public FacemarkAAM {
public:
FacemarkAAMImpl( const FacemarkAAM::Params ¶meters = FacemarkAAM::Params() );
void read( const FileNode& /*fn*/ ) CV_OVERRIDE;
void write( FileStorage& /*fs*/ ) const CV_OVERRIDE;
void saveModel(String fs);
void loadModel(String fs) CV_OVERRIDE;
bool setFaceDetector(bool(*f)(InputArray , OutputArray, void * ), void* userData) CV_OVERRIDE;
bool getFaces(InputArray image, OutputArray faces) CV_OVERRIDE;
bool getData(void * items) CV_OVERRIDE;
bool fitConfig( InputArray image, InputArray roi, OutputArrayOfArrays _landmarks, const std::vector<Config> &runtime_params ) CV_OVERRIDE;
protected:
bool fit( InputArray image, InputArray faces, OutputArrayOfArrays landmarks ) CV_OVERRIDE;
//bool fit( InputArray image, InputArray faces, InputOutputArray landmarks, void * runtime_params);//!< from many ROIs
bool fitImpl( const Mat image, std::vector<Point2f>& landmarks,const Mat R,const Point2f T,const float scale, const int sclIdx=0 );
bool addTrainingSample(InputArray image, InputArray landmarks) CV_OVERRIDE;
void training(void* parameters) CV_OVERRIDE;
Mat procrustes(std::vector<Point2f> , std::vector<Point2f> , Mat & , Scalar & , float & );
void calcMeanShape(std::vector<std::vector<Point2f> > ,std::vector<Point2f> & );
void procrustesAnalysis(std::vector<std::vector<Point2f> > , std::vector<std::vector<Point2f> > & , std::vector<Point2f> & );
inline Mat linearize(Mat );
inline Mat linearize(std::vector<Point2f> );
void getProjection(const Mat , Mat &, int );
void calcSimilarityEig(std::vector<Point2f> ,Mat , Mat & , Mat & );
Mat orthonormal(Mat );
void delaunay(std::vector<Point2f> , std::vector<Vec3i> & );
Mat createMask(std::vector<Point2f> , Rect );
Mat createTextureBase(std::vector<Point2f> , std::vector<Vec3i> , Rect , std::vector<std::vector<Point> > & );
Mat warpImage(const Mat ,const std::vector<Point2f> ,const std::vector<Point2f> ,
const std::vector<Vec3i> , const Rect , const std::vector<std::vector<Point> > );
template <class T>
Mat getFeature(const Mat , std::vector<int> map);
void createMaskMapping(const Mat mask, const Mat mask2, std::vector<int> & , std::vector<int> &, std::vector<int> &);
void warpUpdate(std::vector<Point2f> & shape, Mat delta, std::vector<Point2f> s0, Mat S, Mat Q, std::vector<Vec3i> triangles,std::vector<std::vector<int> > Tp);
Mat computeWarpParts(std::vector<Point2f> curr_shape,std::vector<Point2f> s0, Mat ds0, std::vector<Vec3i> triangles,std::vector<std::vector<int> > Tp);
void image_jacobian(const Mat gx, const Mat gy, const Mat Jx, const Mat Jy, Mat & G);
void gradient(const Mat M, Mat & gx, Mat & gy);
void createWarpJacobian(Mat S, Mat Q, std::vector<Vec3i> , Model::Texture & T, Mat & Wx_dp, Mat & Wy_dp, std::vector<std::vector<int> > & Tp);
std::vector<Mat> images;
std::vector<std::vector<Point2f> > facePoints;
FacemarkAAM::Params params;
FacemarkAAM::Model AAM;
FN_FaceDetector faceDetector;
void* faceDetectorData;
private:
bool isModelTrained;
};
/*
* Constructor
*/
Ptr<FacemarkAAM> FacemarkAAM::create(const FacemarkAAM::Params ¶meters){
return Ptr<FacemarkAAMImpl>(new FacemarkAAMImpl(parameters));
}
/*
* Constructor
*/
Ptr<Facemark> createFacemarkAAM(){
FacemarkAAM::Params parameters;
return Ptr<FacemarkAAMImpl>(new FacemarkAAMImpl(parameters));
}
FacemarkAAMImpl::FacemarkAAMImpl( const FacemarkAAM::Params ¶meters ) :
params( parameters ),
faceDetector(NULL), faceDetectorData(NULL)
{
isModelTrained = false;
}
void FacemarkAAMImpl::read( const cv::FileNode& fn ){
params.read( fn );
}
void FacemarkAAMImpl::write( cv::FileStorage& fs ) const {
params.write( fs );
}
bool FacemarkAAMImpl::setFaceDetector(bool(*f)(InputArray , OutputArray, void *), void* userData){
faceDetector = f;
faceDetectorData = userData;
return true;
}
bool FacemarkAAMImpl::getFaces(InputArray image, OutputArray faces)
{
if (!faceDetector)
return false;
return faceDetector(image, faces, faceDetectorData);
}
bool FacemarkAAMImpl::getData(void * items){
CV_Assert(items);
Data* data = (Data*)items;
data->s0 = AAM.s0;
return true;
}
bool FacemarkAAMImpl::addTrainingSample(InputArray image, InputArray landmarks){
// FIXIT
std::vector<Point2f> & _landmarks = *(std::vector<Point2f>*)landmarks.getObj();
images.push_back(image.getMat());
facePoints.push_back(_landmarks);
return true;
}
void FacemarkAAMImpl::training(void* parameters){
if(parameters!=0){/*do nothing*/}
if (images.size()<1) {
CV_Error(Error::StsBadArg, "Training data is not provided. Consider to add using addTrainingSample() function!");
}
if(strcmp(params.model_filename.c_str(),"")==0 && params.save_model){
CV_Error(Error::StsBadArg, "The model_filename parameter should be set!");
}
std::vector<std::vector<Point2f> > normalized;
Mat erode_kernel = getStructuringElement(MORPH_RECT, Size(3,3), Point(1,1));
Mat image;
int param_max_m = params.max_m;//550;
int param_max_n = params.max_n;//136;
AAM.scales = params.scales;
AAM.textures.resize(AAM.scales.size());
/*-------------- A. Load the training data---------*/
procrustesAnalysis(facePoints, normalized,AAM.s0);
/*-------------- B. Create the shape model---------*/
Mat s0_lin = linearize(AAM.s0).t() ;
// linearize all shapes data, all x and then all y for each shape
Mat M;
for(unsigned i=0;i<normalized.size();i++){
M.push_back(linearize(normalized[i]).t()-s0_lin);
}
/* get PCA Projection vectors */
Mat S;
getProjection(M.t(),S,param_max_n);
/* Create similarity eig*/
Mat shape_S,shape_Q;
calcSimilarityEig(AAM.s0,S,AAM.Q,AAM.S);
/* ----------C. Create the coordinate frame ------------*/
delaunay(AAM.s0,AAM.triangles);
for(size_t scale=0; scale<AAM.scales.size();scale++){
AAM.textures[scale].max_m = params.texture_max_m;//145;
if(params.verbose) printf("Training for scale %f ...\n", AAM.scales[scale]);
Mat s0_scaled_m = Mat(AAM.s0)/AAM.scales[scale]; // scale the shape
std::vector<Point2f> s0_scaled = s0_scaled_m.reshape(2); //convert to points
/*get the min and max of x and y coordinate*/
double min_x, max_x, min_y, max_y;
s0_scaled_m = s0_scaled_m.reshape(1);
Mat s0_scaled_x = s0_scaled_m.col(0);
Mat s0_scaled_y = s0_scaled_m.col(1);
minMaxIdx(s0_scaled_x, &min_x, &max_x);
minMaxIdx(s0_scaled_y, &min_y, &max_y);
std::vector<Point2f> base_shape = Mat(Mat(s0_scaled)-Scalar(min_x-2.0,min_y-2.0)).reshape(2);
AAM.textures[scale].base_shape = base_shape;
AAM.textures[scale].resolution = Rect(0,0,(int)ceil(max_x-min_x+3),(int)ceil(max_y-min_y+3));
Mat base_texture = createTextureBase(base_shape, AAM.triangles, AAM.textures[scale].resolution, AAM.textures[scale].textureIdx);
Mat mask1 = base_texture>0;
Mat mask2;
erode(mask1, mask1, erode_kernel);
erode(mask1, mask2, erode_kernel);
Mat warped;
std::vector<int> fe_map;
createMaskMapping(mask1,mask2, AAM.textures[scale].ind1, AAM.textures[scale].ind2,fe_map);//ok
/* ------------ Part D. Get textures -------------*/
Mat texture_feats, feat;
if(params.verbose) printf("(1/4) Feature extraction ...\n");
for(size_t i=0; i<images.size();i++){
if(params.verbose) printf("extract features from image #%i/%i\n", (int)(i+1), (int)images.size());
warped = warpImage(images[i],base_shape, facePoints[i], AAM.triangles, AAM.textures[scale].resolution,AAM.textures[scale].textureIdx);
feat = getFeature<uchar>(warped, AAM.textures[scale].ind1);
texture_feats.push_back(feat.t());
}
Mat T= texture_feats.t();
/* -------------- E. Create the texture model -----------------*/
reduce(T,AAM.textures[scale].A0,1, REDUCE_AVG);
if(params.verbose) printf("(2/4) Compute the feature average ...\n");
Mat A0_mtx = repeat(AAM.textures[scale].A0,1,T.cols);
Mat textures_normalized = T - A0_mtx;
if(params.verbose) printf("(3/4) Projecting the features ...\n");
getProjection(textures_normalized, AAM.textures[scale].A ,param_max_m);
AAM.textures[scale].AA0 = getFeature<float>(AAM.textures[scale].A0, fe_map);
if(params.verbose) printf("(4/4) Extraction of the eroded face features ...\n");
Mat U_data, ud;
for(int i =0;i<AAM.textures[scale].A.cols;i++){
Mat c = AAM.textures[scale].A.col(i);
ud = getFeature<float>(c,fe_map);
U_data.push_back(ud.t());
}
Mat U = U_data.t();
AAM.textures[scale].AA = orthonormal(U);
} // scale
images.clear();
if(params.save_model){
if(params.verbose) printf("Saving the model\n");
saveModel(params.model_filename);
}
isModelTrained = true;
if(params.verbose) printf("Training is completed\n");
}
bool FacemarkAAMImpl::fit( InputArray image, InputArray roi, OutputArrayOfArrays _landmarks )
{
std::vector<Config> config; // empty
return fitConfig(image, roi, _landmarks, config);
}
bool FacemarkAAMImpl::fitConfig( InputArray image, InputArray roi, OutputArrayOfArrays _landmarks, const std::vector<Config> &configs )
{
std::vector<Rect> & faces = *(std::vector<Rect> *)roi.getObj();
if(faces.size()<1) return false;
std::vector<std::vector<Point2f> > & landmarks =
*(std::vector<std::vector<Point2f> >*) _landmarks.getObj();
landmarks.resize(faces.size());
Mat img = image.getMat();
if (! configs.empty()){
if (configs.size()!=faces.size()) {
CV_Error(Error::StsBadArg, "Number of faces and extra_parameters are different!");
}
for(size_t i=0; i<configs.size();i++){
fitImpl(img, landmarks[i], configs[i].R,configs[i].t, configs[i].scale, configs[i].model_scale_idx);
}
}else{
Mat R = Mat::eye(2, 2, CV_32F);
Point2f t = Point2f((float)(img.cols/2.0),(float)(img.rows/2.0));
float scale = 1.0;
for(unsigned i=0; i<faces.size();i++){
fitImpl(img, landmarks[i], R,t, scale);
}
}
return true;
}
bool FacemarkAAMImpl::fitImpl( const Mat image, std::vector<Point2f>& landmarks, const Mat R, const Point2f T, const float scale, int _scl){
if (landmarks.size()>0)
landmarks.clear();
CV_Assert(isModelTrained);
int param_n = params.n, param_m = params.m;
int scl = _scl<(int)AAM.scales.size()?_scl:(int)AAM.scales.size();
/*variables*/
std::vector<Point2f> s0 = Mat(Mat(AAM.s0)/AAM.scales[scl]).reshape(2);
/*pre-computation*/
Mat S = Mat(AAM.S, Range::all(), Range(0,param_n>AAM.S.cols?AAM.S.cols:param_n)).clone(); // chop the shape data
std::vector<std::vector<int> > Tp;
Mat Wx_dp, Wy_dp;
createWarpJacobian(S, AAM.Q, AAM.triangles, AAM.textures[scl],Wx_dp, Wy_dp, Tp);
std::vector<Point2f> s0_init = Mat(Mat(R*scale*AAM.scales[scl]*Mat(Mat(s0).reshape(1)).t()).t()).reshape(2);
std::vector<Point2f> curr_shape = Mat(Mat(s0_init)+Scalar(T.x,T.y));
curr_shape = Mat(1.0/scale*Mat(curr_shape)).reshape(2);
Mat imgray;
Mat img;
if(image.channels()>1){
cvtColor(image,imgray,COLOR_BGR2GRAY);
}else{
imgray = image;
}
resize(imgray,img,Size(int(image.cols/scale),int(image.rows/scale)), 0, 0, INTER_LINEAR_EXACT);// matlab use bicubic interpolation, the result is float numbers
/*chop the textures model*/
int maxCol = param_m;
if(AAM.textures[scl].A.cols<param_m)maxCol = AAM.textures[scl].A.cols;
if(AAM.textures[scl].AA.cols<maxCol)maxCol = AAM.textures[scl].AA.cols;
Mat A = Mat(AAM.textures[scl].A,Range(0,AAM.textures[scl].A.rows), Range(0,maxCol)).clone();
Mat AA = Mat(AAM.textures[scl].AA,Range(0,AAM.textures[scl].AA.rows), Range(0,maxCol)).clone();
/*iteratively update the fitting*/
Mat I, II, warped, c, gx, gy, Irec, Irec_feat, dc;
Mat refI, refII, refWarped, ref_c, ref_gx, ref_gy, refIrec, refIrec_feat, ref_dc ;
for(int t=0;t<params.n_iter;t++){
warped = warpImage(img,AAM.textures[scl].base_shape, curr_shape,
AAM.triangles,
AAM.textures[scl].resolution ,
AAM.textures[scl].textureIdx);
I = getFeature<uchar>(warped, AAM.textures[scl].ind1);
II = getFeature<uchar>(warped, AAM.textures[scl].ind2);
if(t==0){
c = A.t()*(I-AAM.textures[scl].A0); //little bit different to matlab, probably due to datatype
}else{
c = c+dc;
}
Irec_feat = (AAM.textures[scl].A0+A*c);
Irec = Mat::zeros(AAM.textures[scl].resolution.width, AAM.textures[scl].resolution.height, CV_32FC1);
for(int j=0;j<(int)AAM.textures[scl].ind1.size();j++){
Irec.at<float>(AAM.textures[scl].ind1[j]) = Irec_feat.at<float>(j);
}
Mat irec = Irec.t();
gradient(irec, gx, gy);
Mat Jc;
image_jacobian(Mat(gx.t()).reshape(0,1).t(),Mat(gy.t()).reshape(0,1).t(),Wx_dp, Wy_dp,Jc);
Mat J;
std::vector<float> Irec_vec;
for(size_t j=0;j<AAM.textures[scl].ind2.size();j++){
J.push_back(Jc.row(AAM.textures[scl].ind2[j]));
Irec_vec.push_back(Irec.at<float>(AAM.textures[scl].ind2[j]));
}
/*compute Jfsic and Hfsic*/
Mat Jfsic = J - AA*(AA.t()*J);
Mat Hfsic = Jfsic.t()*Jfsic;
Mat iHfsic;
invert(Hfsic, iHfsic);
/*compute dp dq and dc*/
Mat dqp = iHfsic*Jfsic.t()*(II-AAM.textures[scl].AA0);
dc = AA.t()*(II-Mat(Irec_vec)-J*dqp);
warpUpdate(curr_shape, dqp, s0,S, AAM.Q, AAM.triangles,Tp);
}
landmarks = Mat(scale*Mat(curr_shape)).reshape(2);
return true;
}
void FacemarkAAMImpl::saveModel(String s){
FileStorage fs(s.c_str(),FileStorage::WRITE_BASE64);
fs << "AAM_tri" << AAM.triangles;
fs << "scales" << AAM.scales;
fs << "s0" << AAM.s0;
fs << "S" << AAM.S;
fs << "Q" << AAM.Q;
String x;
for(int i=0;i< (int)AAM.scales.size();i++){
x = cv::format("scale%i_max_m",i);
fs << x << AAM.textures[i].max_m;
x = cv::format("scale%i_resolution",i);
fs << x << AAM.textures[i].resolution;
x = cv::format("scale%i_textureIdx",i);
fs << x << AAM.textures[i].textureIdx;
x = cv::format("scale%i_base_shape",i);
fs << x << AAM.textures[i].base_shape;
x = cv::format("scale%i_A",i);
fs << x << AAM.textures[i].A;
x = cv::format("scale%i_A0",i);
fs << x << AAM.textures[i].A0;
x = cv::format("scale%i_AA",i);
fs << x << AAM.textures[i].AA;
x = cv::format("scale%i_AA0",i);
fs << x << AAM.textures[i].AA0;
x = cv::format("scale%i_ind1",i);
fs << x << AAM.textures[i].ind1;
x = cv::format("scale%i_ind2",i);
fs << x << AAM.textures[i].ind2;
}
fs.release();
if(params.verbose) printf("The model is successfully saved! \n");
}
void FacemarkAAMImpl::loadModel(String s){
FileStorage fs(s.c_str(),FileStorage::READ);
String x;
fs["AAM_tri"] >> AAM.triangles;
fs["scales"] >> AAM.scales;
fs["s0"] >> AAM.s0;
fs["S"] >> AAM.S;
fs["Q"] >> AAM.Q;
AAM.textures.resize(AAM.scales.size());
for(int i=0;i< (int)AAM.scales.size();i++){
x = cv::format("scale%i_max_m",i);
fs[x] >> AAM.textures[i].max_m;
x = cv::format("scale%i_resolution",i);
fs[x] >> AAM.textures[i].resolution;
x = cv::format("scale%i_textureIdx",i);
fs[x] >> AAM.textures[i].textureIdx;
x = cv::format("scale%i_base_shape",i);
fs[x] >> AAM.textures[i].base_shape;
x = cv::format("scale%i_A",i);
fs[x] >> AAM.textures[i].A;
x = cv::format("scale%i_A0",i);
fs[x] >> AAM.textures[i].A0;
x = cv::format("scale%i_AA",i);
fs[x] >> AAM.textures[i].AA;
x = cv::format("scale%i_AA0",i);
fs[x] >> AAM.textures[i].AA0;
x = cv::format("scale%i_ind1",i);
fs[x] >> AAM.textures[i].ind1;
x = cv::format("scale%i_ind2",i);
fs[x] >> AAM.textures[i].ind2;
}
fs.release();
isModelTrained = true;
if(params.verbose) printf("the model has been loaded\n");
}
Mat FacemarkAAMImpl::procrustes(std::vector<Point2f> P, std::vector<Point2f> Q, Mat & rot, Scalar & trans, float & scale){
// calculate average
Scalar mx = mean(P);
Scalar my = mean(Q);
// zero centered data
Mat X0 = Mat(P) - mx;
Mat Y0 = Mat(Q) - my;
// calculate magnitude
Mat Xs, Ys;
multiply(X0,X0,Xs);
multiply(Y0,Y0,Ys);
// calculate the sum
Mat sumXs, sumYs;
reduce(Xs,sumXs, 0, REDUCE_SUM);
reduce(Ys,sumYs, 0, REDUCE_SUM);
//calculate the normrnd
double normX = sqrt(Mat(sumXs.reshape(1)).at<float>(0)+Mat(sumXs.reshape(1)).at<float>(1));
double normY = sqrt(Mat(sumYs.reshape(1)).at<float>(0)+Mat(sumYs.reshape(1)).at<float>(1));
//normalization
X0 = X0/normX;
Y0 = Y0/normY;
//reshape, convert to 2D Matrix
Mat Xn=X0.reshape(1);
Mat Yn=Y0.reshape(1);
//calculate the covariance matrix
Mat M = Xn.t()*Yn;
// decompose
Mat U,S,Vt;
SVD::compute(M, S, U, Vt);
// extract the transformations
scale = (S.at<float>(0)+S.at<float>(1))*(float)normX/(float)normY;
rot = Vt.t()*U.t();
Mat muX(mx),mX; muX.pop_back();muX.pop_back();
Mat muY(my),mY; muY.pop_back();muY.pop_back();
muX.convertTo(mX,CV_32FC1);
muY.convertTo(mY,CV_32FC1);
Mat t = mX.t()-scale*mY.t()*rot;
trans[0] = t.at<float>(0);
trans[1] = t.at<float>(1);
// calculate the recovered form
Mat Qmat = Mat(Q).reshape(1);
return Mat(scale*Qmat*rot+trans).clone();
}
void FacemarkAAMImpl::procrustesAnalysis(std::vector<std::vector<Point2f> > shapes, std::vector<std::vector<Point2f> > & normalized, std::vector<Point2f> & new_mean){
std::vector<Scalar> mean_every_shape;
mean_every_shape.resize(shapes.size());
Point2f temp;
// calculate the mean of every shape
for(size_t i=0; i< shapes.size();i++){
mean_every_shape[i] = mean(shapes[i]);
}
//normalize every shapes
Mat tShape;
normalized.clear();
for(size_t i=0; i< shapes.size();i++){
normalized.push_back((Mat)(Mat(shapes[i]) - mean_every_shape[i]));
}
// calculate the mean shape
std::vector<Point2f> mean_shape;
calcMeanShape(normalized, mean_shape);
// update the mean shape and normalized shapes iteratively
int maxIter = 100;
Mat R;
Scalar t;
float s;
Mat aligned;
for(int i=0;i<maxIter;i++){
// align
for(unsigned k=0;k< normalized.size();k++){
aligned=procrustes(mean_shape, normalized[k], R, t, s);
aligned.reshape(2).copyTo(normalized[k]);
}
//calc new mean
calcMeanShape(normalized, new_mean);
// align the new mean
aligned=procrustes(mean_shape, new_mean, R, t, s);
// update
aligned.reshape(2).copyTo(mean_shape);
}
}
void FacemarkAAMImpl::calcMeanShape(std::vector<std::vector<Point2f> > shapes,std::vector<Point2f> & mean){
mean.resize(shapes[0].size());
Point2f tmp;
for(unsigned i=0;i<shapes[0].size();i++){
tmp.x=0;
tmp.y=0;
for(unsigned k=0;k< shapes.size();k++){
tmp.x+= shapes[k][i].x;
tmp.y+= shapes[k][i].y;
}
tmp.x/=shapes.size();
tmp.y/=shapes.size();
mean[i] = tmp;
}
}
void FacemarkAAMImpl::getProjection(const Mat M, Mat & P, int n){
Mat U,S,Vt,S1, Ut;
int k;
if(M.rows < M.cols){
// SVD::compute(M*M.t(), S, U, Vt);
eigen(M*M.t(), S, Ut); U=Ut.t();
// find the minimum between number of non-zero eigval,
// compressed dim, row, and column
// threshold(S,S1,0.00001,1,THRESH_BINARY);
k= S.rows; //countNonZero(S1);
if(k>n)k=n;
if(k>M.rows)k=M.rows;
if(k>M.cols)k=M.cols;
// cut the column of eigen vector
U.colRange(0,k).copyTo(P);
}else{
// SVD::compute(M.t()*M, S, U, Vt);
eigen(M.t()*M, S, Ut);U=Ut.t();
// threshold(S,S1,0.00001,1,THRESH_BINARY);
k= S.rows; //countNonZero(S1);
if(k>n)k=n;
if(k>M.rows)k=M.rows;
if(k>M.cols)k=M.cols;
// cut the eigen values to k-amount
Mat D = Mat::zeros(k,k,CV_32FC1);
Mat diag = D.diag();
Mat s; pow(S,-0.5,s);
s(Range(0,k), Range::all()).copyTo(diag);
// cut the eigen vector to k-column,
P = Mat(M*U.colRange(0,k)*D).clone();
}
}
Mat FacemarkAAMImpl::orthonormal(Mat Mo){
Mat M;
Mo.convertTo(M,CV_32FC1);
// TODO: float precission is only 1e-7, but MATLAB version use thresh=2.2204e-16
float thresh = (float)2.2204e-6;
Mat O = Mat::zeros(M.rows, M.cols, CV_32FC1);
int k = 0; //storing index
Mat w,nv;
float n;
for(int i=0;i<M.cols;i++){
Mat v = M.col(i); // processed column to orthogonalize
// subtract projection over previous vectors
for(int j=0;j<k;j++){
Mat o=O.col(j);
w = v-o*(o.t()*v);
w.copyTo(v);
}
// only keep non zero vector
n = (float)norm(v);
if(n>thresh){
Mat ok=O.col(k);
// nv=v/n;
normalize(v,nv);
nv.copyTo(ok);
k+=1;
}
}
return O.colRange(0,k).clone();
}
void FacemarkAAMImpl::calcSimilarityEig(std::vector<Point2f> s0,Mat S, Mat & Q_orth, Mat & S_orth){
int npts = (int)s0.size();
Mat Q = Mat::zeros(2*npts,4,CV_32FC1);
Mat c0 = Q.col(0);
Mat c1 = Q.col(1);
Mat c2 = Q.col(2);
Mat c3 = Q.col(3);
/*c0 = s0(:)*/
Mat w = linearize(s0);
// w.convertTo(w, CV_64FC1);
w.copyTo(c0);
/*c1 = [-s0(npts:2*npts); s0(0:npts-1)]*/
Mat s0_mat = Mat(s0).reshape(1);
// s0_mat.convertTo(s0_mat, CV_64FC1);
Mat swapper = Mat::zeros(2,npts,CV_32FC1);
Mat s00 = s0_mat.col(0);
Mat s01 = s0_mat.col(1);
Mat sw0 = swapper.row(0);
Mat sw1 = swapper.row(1);
Mat(s00.t()).copyTo(sw1);
s01 = -s01;
Mat(s01.t()).copyTo(sw0);
Mat(swapper.reshape(1,2*npts)).copyTo(c1);
/*c2 - [ones(npts); zeros(npts)]*/
Mat ones = Mat::ones(1,npts,CV_32FC1);
Mat c2_mat = Mat::zeros(2,npts,CV_32FC1);
Mat c20 = c2_mat.row(0);
ones.copyTo(c20);
Mat(c2_mat.reshape(1,2*npts)).copyTo(c2);
/*c3 - [zeros(npts); ones(npts)]*/
Mat c3_mat = Mat::zeros(2,npts,CV_32FC1);
Mat c31 = c3_mat.row(1);
ones.copyTo(c31);
Mat(c3_mat.reshape(1,2*npts)).copyTo(c3);
Mat Qo = orthonormal(Q);
Mat all = Qo.t();
all.push_back(S.t());
Mat allOrth = orthonormal(all.t());
Q_orth = allOrth.colRange(0,4).clone();
S_orth = allOrth.colRange(4,allOrth.cols).clone();
}
inline Mat FacemarkAAMImpl::linearize(Mat s){ // all x values and then all y values
return Mat(s.reshape(1).t()).reshape(1,2*s.rows);
}
inline Mat FacemarkAAMImpl::linearize(std::vector<Point2f> s){ // all x values and then all y values
return linearize(Mat(s));
}
void FacemarkAAMImpl::delaunay(std::vector<Point2f> s, std::vector<Vec3i> & triangles)
{
triangles.clear();
std::vector<Vec6f> tp;
double min_x, max_x, min_y, max_y;
Mat S = Mat(s).reshape(1);
Mat s_x = S.col(0);
Mat s_y = S.col(1);
minMaxIdx(s_x, &min_x, &max_x);
minMaxIdx(s_y, &min_y, &max_y);
// TODO FIXIT Some triangles are lost
//Subdiv2D subdiv(Rect(cvFloor(min_x), cvFloor(min_y), cvCeil(max_x) - cvFloor(min_x), cvCeil(max_y) - cvFloor(min_y)));
Subdiv2D subdiv(Rect(cvFloor(min_x) - 10, cvFloor(min_y) - 10, cvCeil(max_x) - cvFloor(min_x) + 20, cvCeil(max_y) - cvFloor(min_y) + 20));
// map subdiv_verter -> original point (or the first alias)
std::vector<int> idx(s.size() + 4);
for (size_t i = 0; i < s.size(); ++i)
{
int vertex = subdiv.insert(s[i]);
if (idx.size() <= (size_t)vertex)
idx.resize(vertex + 1);
idx[vertex] = (int)i;
}
subdiv.getTriangleList(tp);
for (size_t i = 0; i < tp.size(); i++)
{
const Vec6f& t = tp[i];
//accept only vertex point
CV_Assert(
t[0]>=min_x && t[0]<=max_x && t[1]>=min_y && t[1]<=max_y &&
t[2]>=min_x && t[2]<=max_x && t[3]>=min_y && t[3]<=max_y &&
t[4]>=min_x && t[4]<=max_x && t[5]>=min_y && t[5]<=max_y
);
int tmp = 0, v1 = 0, v2 = 0, v3 = 0;
subdiv.locate(Point2f(t[0], t[1]), tmp, v1);
subdiv.locate(Point2f(t[2], t[3]), tmp, v2);
subdiv.locate(Point2f(t[4], t[5]), tmp, v3);
triangles.push_back(Vec3i(idx[v1], idx[v2], idx[v3]));
} // for
}
Mat FacemarkAAMImpl::createMask(std::vector<Point2f> base_shape, Rect res){
Mat mask = Mat::zeros(res.height, res.width, CV_8U);
std::vector<Point> hull;
std::vector<Point> shape;
Mat(base_shape).convertTo(shape, CV_32S);
convexHull(shape,hull);
fillConvexPoly(mask, &hull[0], (int)hull.size(), 255, 8 ,0);
return mask.clone();
}
Mat FacemarkAAMImpl::createTextureBase(std::vector<Point2f> shape, std::vector<Vec3i> triangles, Rect res, std::vector<std::vector<Point> > & textureIdx){
// max supported amount of triangles only 255
Mat mask = Mat::zeros(res.height, res.width, CV_8U);
std::vector<Point2f> p(3);
textureIdx.clear();
for(size_t i=0;i<triangles.size();i++){
p[0] = shape[triangles[i][0]];
p[1] = shape[triangles[i][1]];
p[2] = shape[triangles[i][2]];
std::vector<Point> polygon;
approxPolyDP(p,polygon, 1.0, true);
fillConvexPoly(mask, &polygon[0], (int)polygon.size(), (double)i+1,8,0 );
std::vector<Point> list;
for(int y=0;y<res.height;y++){
for(int x=0;x<res.width;x++){
if(mask.at<uchar>(y,x)==(uchar)(i+1)){
list.push_back(Point(x,y));
}
}
}
textureIdx.push_back(list);
}
return mask.clone();
}
Mat FacemarkAAMImpl::warpImage(
const Mat img, const std::vector<Point2f> target_shape,
const std::vector<Point2f> curr_shape, const std::vector<Vec3i> triangles,
const Rect res, const std::vector<std::vector<Point> > textureIdx)
{
// TODO: this part can be optimized, collect tranformation pair form all triangles first, then do one time remapping
Mat warped = Mat::zeros(res.height, res.width, CV_8U);
Mat warped2 = Mat::zeros(res.height, res.width, CV_8U);
Mat image,part, warped_part;
if(img.channels()>1){
cvtColor(img,image,COLOR_BGR2GRAY);
}else{
image = img;
}
Mat A,R,t;
A = Mat::zeros(2,3,CV_64F);
std::vector<Point2f> target(3),source(3);
std::vector<Point> polygon;
for(size_t i=0;i<triangles.size();i++){
target[0] = target_shape[triangles[i][0]];
target[1] = target_shape[triangles[i][1]];
target[2] = target_shape[triangles[i][2]];
source[0] = curr_shape[triangles[i][0]];
source[1] = curr_shape[triangles[i][1]];
source[2] = curr_shape[triangles[i][2]];
Mat target_mtx = Mat(target).reshape(1)-1.0;
Mat source_mtx = Mat(source).reshape(1)-1.0;
Mat U = target_mtx.col(0);
Mat V = target_mtx.col(1);
Mat X = source_mtx.col(0);
Mat Y = source_mtx.col(1);
double denominator = (target[1].x-target[0].x)*(target[2].y-target[0].y)-
(target[1].y-target[0].y)*(target[2].x-target[0].x);
// denominator = 1.0/denominator;
A.at<double>(0) = ((target[2].y-target[0].y)*(source[1].x-source[0].x)-
(target[1].y-target[0].y)*(source[2].x-source[0].x))/denominator;
A.at<double>(1) = ((target[1].x-target[0].x)*(source[2].x-source[0].x)-
(target[2].x-target[0].x)*(source[1].x-source[0].x))/denominator;
A.at<double>(2) =X.at<float>(0) + ((V.at<float>(0) * (U.at<float>(2) - U.at<float>(0)) - U.at<float>(0)*(V.at<float>(2) - V.at<float>(0))) * (X.at<float>(1) - X.at<float>(0)) + (U.at<float>(0) * (V.at<float>(1) - V.at<float>(0)) - V.at<float>(0)*(U.at<float>(1) - U.at<float>(0))) * (X.at<float>(2) - X.at<float>(0))) / denominator;
A.at<double>(3) =((V.at<float>(2) - V.at<float>(0)) * (Y.at<float>(1) - Y.at<float>(0)) - (V.at<float>(1) - V.at<float>(0)) * (Y.at<float>(2) - Y.at<float>(0))) / denominator;
A.at<double>(4) = ((U.at<float>(1) - U.at<float>(0)) * (Y.at<float>(2) - Y.at<float>(0)) - (U.at<float>(2) - U.at<float>(0)) * (Y.at<float>(1) - Y.at<float>(0))) / denominator;
A.at<double>(5) = Y.at<float>(0) + ((V.at<float>(0) * (U.at<float>(2) - U.at<float>(0)) - U.at<float>(0) * (V.at<float>(2) - V.at<float>(0))) * (Y.at<float>(1) - Y.at<float>(0)) + (U.at<float>(0) * (V.at<float>(1) - V.at<float>(0)) - V.at<float>(0)*(U.at<float>(1) - U.at<float>(0))) * (Y.at<float>(2) - Y.at<float>(0))) / denominator;
// A = getAffineTransform(target,source);
R=A.colRange(0,2);
t=A.colRange(2,3);
Mat pts_ori = Mat(textureIdx[i]).reshape(1);
Mat pts = pts_ori.t(); //matlab
Mat bx = pts_ori.col(0);
Mat by = pts_ori.col(1);
Mat base_ind = (by-1)*res.width+bx;
Mat pts_f;
pts.convertTo(pts_f,CV_64FC1);
pts_f.push_back(Mat::ones(1,(int)textureIdx[i].size(),CV_64FC1));
Mat trans = (A*pts_f).t();
Mat T; trans.convertTo(T, CV_32S); // this rounding make the result a little bit different to matlab
Mat mx = T.col(0);
Mat my = T.col(1);
Mat ind = (my-1)*image.cols+mx;
int maxIdx = image.rows*image.cols;
int idx;
for(int k=0;k<ind.rows;k++){
idx=ind.at<int>(k);
if(idx>=0 && idx<maxIdx){
warped.at<uchar>(base_ind.at<int>(k)) = (uchar)(image.at<uchar>(idx));
}
}
warped.copyTo(warped2);
}
return warped2.clone();
}
template <class T>
Mat FacemarkAAMImpl::getFeature(const Mat m, std::vector<int> map){
std::vector<float> feat;
Mat M = m.t();//matlab
for(size_t i=0;i<map.size();i++){
feat.push_back((float)M.at<T>(map[i]));
}
return Mat(feat).clone();
}
void FacemarkAAMImpl::createMaskMapping(const Mat m1, const Mat m2, std::vector<int> & ind1, std::vector<int> & ind2, std::vector<int> & ind3){
int cnt = 0, idx=0;
ind1.clear();
ind2.clear();
ind3.clear();
Mat mask = m1.t();//matlab
Mat mask2 = m2.t();//matlab
for(int i=0;i<mask.rows;i++){
for(int j=0;j<mask.cols;j++){
if(mask.at<uchar>(i,j)>0){
if(mask2.at<uchar>(i,j)>0){
ind2.push_back(idx);
ind3.push_back(cnt);
}
ind1.push_back(idx);
cnt +=1;
}
idx+=1;
} // j
} // i
}
void FacemarkAAMImpl::image_jacobian(const Mat gx, const Mat gy, const Mat Jx, const Mat Jy, Mat & G){
Mat Gx = repeat(gx,1,Jx.cols);
Mat Gy = repeat(gy,1,Jx.cols);
Mat G1,G2;
multiply(Gx,Jx,G1);
multiply(Gy,Jy,G2);
G=G1+G2;
}
void FacemarkAAMImpl::warpUpdate(std::vector<Point2f> & shape, Mat delta, std::vector<Point2f> s0, Mat S, Mat Q, std::vector<Vec3i> triangles,std::vector<std::vector<int> > Tp){
std::vector<Point2f> new_shape;
int nSimEig = 4;
/*get dr, dp and compute ds0*/
Mat dr = -Mat(delta, Range(0,nSimEig));
Mat dp = -Mat(delta, Range(nSimEig, delta.rows));
Mat ds0 = S*dp + Q*dr;
Mat ds0_mat = Mat::zeros((int)s0.size(),2, CV_32FC1);
Mat c0 = ds0_mat.col(0);
Mat c1 = ds0_mat.col(1);
Mat(ds0, Range(0,(int)s0.size())).copyTo(c0);
Mat(ds0, Range((int)s0.size(),(int)s0.size()*2)).copyTo(c1);
Mat s_new = computeWarpParts(shape,s0,ds0_mat, triangles, Tp);
Mat diff =linearize(Mat(s_new - Mat(s0).reshape(1)));
Mat r = Q.t()*diff;
Mat p = S.t()*diff;
Mat s = linearize(s0) +S*p + Q*r;
Mat(Mat(s.t()).reshape(0,2).t()).reshape(2).copyTo(shape);
}
Mat FacemarkAAMImpl::computeWarpParts(std::vector<Point2f> curr_shape,std::vector<Point2f> s0, Mat ds0, std::vector<Vec3i> triangles,std::vector<std::vector<int> > Tp){
std::vector<Point2f> new_shape;
std::vector<Point2f> ds = ds0.reshape(2);
float mx,my;
Mat A;
std::vector<Point2f> target(3),source(3);
std::vector<double> p(3);
p[2] = 1;
for(size_t i=0;i<s0.size();i++){
p[0] = s0[i].x + ds[i].x;
p[1] = s0[i].y + ds[i].y;
std::vector<Point2f> v;
std::vector<float>vx, vy;
for(size_t j=0;j<Tp[i].size();j++){
int idx = Tp[i][j];
target[0] = s0[triangles[idx][0]];
target[1] = s0[triangles[idx][1]];
target[2] = s0[triangles[idx][2]];
source[0] = curr_shape[triangles[idx][0]];
source[1] = curr_shape[triangles[idx][1]];
source[2] = curr_shape[triangles[idx][2]];
A = getAffineTransform(target,source);
Mat(A*Mat(p)).reshape(2).copyTo(v);
vx.push_back(v[0].x);
vy.push_back(v[0].y);
}// j
/*find the median*/
size_t n = vx.size()/2;
nth_element(vx.begin(), vx.begin()+n, vx.end());
mx = vx[n];
nth_element(vy.begin(), vy.begin()+n, vy.end());
my = vy[n];
new_shape.push_back(Point2f(mx,my));
} // s0.size()
return Mat(new_shape).reshape(1).clone();
}
void FacemarkAAMImpl::gradient(const Mat M, Mat & gx, Mat & gy){
gx = Mat::zeros(M.size(),CV_32FC1);
gy = Mat::zeros(M.size(),CV_32FC1);
/*gx*/
for(int i=0;i<M.rows;i++){
for(int j=0;j<M.cols;j++){
if(j>0 && j<M.cols-1){
gx.at<float>(i,j) = ((float)0.5)*(M.at<float>(i,j+1)-M.at<float>(i,j-1));
}else if (j==0){
gx.at<float>(i,j) = M.at<float>(i,j+1)-M.at<float>(i,j);
}else{
gx.at<float>(i,j) = M.at<float>(i,j)-M.at<float>(i,j-1);
}
}
}
/*gy*/
for(int i=0;i<M.rows;i++){
for(int j=0;j<M.cols;j++){
if(i>0 && i<M.rows-1){
gy.at<float>(i,j) = ((float)0.5)*(M.at<float>(i+1,j)-M.at<float>(i-1,j));
}else if (i==0){
gy.at<float>(i,j) = M.at<float>(i+1,j)-M.at<float>(i,j);
}else{
gy.at<float>(i,j) = M.at<float>(i,j)-M.at<float>(i-1,j);
}
}
}
}
void FacemarkAAMImpl::createWarpJacobian(Mat S, Mat Q, std::vector<Vec3i> triangles, Model::Texture & T, Mat & Wx_dp, Mat & Wy_dp, std::vector<std::vector<int> > & Tp){
std::vector<Point2f> base_shape = T.base_shape;
Rect resolution = T.resolution;
std::vector<std::vector<int> >triangles_on_a_point;
int npts = (int)base_shape.size();
Mat dW_dxdyt ;
/*get triangles for each point*/
std::vector<int> trianglesIdx;
triangles_on_a_point.resize(npts);
for(int i=0;i<(int)triangles.size();i++){
triangles_on_a_point[triangles[i][0]].push_back(i);
triangles_on_a_point[triangles[i][1]].push_back(i);
triangles_on_a_point[triangles[i][2]].push_back(i);
}
Tp = triangles_on_a_point;
/*calculate dW_dxdy*/
float v0x,v0y,v1x,v1y,v2x,v2y, denominator;
for(int k=0;k<npts;k++){
Mat acc = Mat::zeros(resolution.height, resolution.width, CV_32F);
/*for each triangle on k-th point*/
for(size_t i=0;i<triangles_on_a_point[k].size();i++){
int tId = triangles_on_a_point[k][i];
Vec3i v;
if(triangles[tId][0]==k ){
v=Vec3i(triangles[tId][0],triangles[tId][1],triangles[tId][2]);
}else if(triangles[tId][1]==k){
v=Vec3i(triangles[tId][1],triangles[tId][0],triangles[tId][2]);
}else{
v=Vec3i(triangles[tId][2],triangles[tId][0],triangles[tId][1]);
}
v0x = base_shape[v[0]].x;
v0y = base_shape[v[0]].y;
v1x = base_shape[v[1]].x;
v1y = base_shape[v[1]].y;
v2x = base_shape[v[2]].x;
v2y = base_shape[v[2]].y;
denominator = (v1x-v0x)*(v2y-v0y)-(v1y-v0y)*(v2x-v0x);
Mat pixels = Mat(T.textureIdx[tId]).reshape(1); // same, just different order
Mat p;
pixels.convertTo(p,CV_32F, 1.0,1.0); //matlab use offset
Mat x = p.col(0);
Mat y = p.col(1);
Mat alpha = (x-v0x)*(v2y-v0y)-(y-v0y)*(v2x-v0x);
Mat beta = (v1x-v0x)*(y-v0y)-(v1y-v0y)*(x-v0x);
Mat res = 1.0 - alpha/denominator - beta/denominator; // same just different order
/*remap to image form*/
Mat dx = Mat::zeros(resolution.height, resolution.width, CV_32F);
for(int j=0;j<res.rows;j++){
dx.at<float>((int)(y.at<float>(j)-1.0), (int)(x.at<float>(j)-1.0)) = res.at<float>(j); // matlab use offset
};
acc = acc+dx;
}
Mat vectorized = Mat(acc.t()).reshape(0,1);
dW_dxdyt.push_back(vectorized.clone());
}// k
Mat dx_dp;
hconcat(Q, S, dx_dp);
Mat dW_dxdy = dW_dxdyt.t();
Wx_dp = dW_dxdy* Mat(dx_dp,Range(0,npts));
Wy_dp = dW_dxdy* Mat(dx_dp,Range(npts,2*npts));
} //createWarpJacobian
} /* namespace face */
} /* namespace cv */