facerec_lbph.cpp 5.8 KB
/*
 * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
 * Released to public domain under terms of the BSD Simplified license.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of the organization nor the names of its contributors
 *     may be used to endorse or promote products derived from this software
 *     without specific prior written permission.
 *
 *   See <http://www.opensource.org/licenses/bsd-license>
 */

#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"

#include <iostream>
#include <fstream>
#include <sstream>

using namespace cv;
using namespace cv::face;
using namespace std;

static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
    std::ifstream file(filename.c_str(), ifstream::in);
    if (!file) {
        string error_message = "No valid input file was given, please check the given filename.";
        CV_Error(Error::StsBadArg, error_message);
    }
    string line, path, classlabel;
    while (getline(file, line)) {
        stringstream liness(line);
        getline(liness, path, separator);
        getline(liness, classlabel);
        if(!path.empty() && !classlabel.empty()) {
            images.push_back(imread(path, 0));
            labels.push_back(atoi(classlabel.c_str()));
        }
    }
}

int main(int argc, const char *argv[]) {
    // Check for valid command line arguments, print usage
    // if no arguments were given.
    if (argc != 2) {
        cout << "usage: " << argv[0] << " <csv.ext>" << endl;
        exit(1);
    }
    // Get the path to your CSV.
    string fn_csv = string(argv[1]);
    // These vectors hold the images and corresponding labels.
    vector<Mat> images;
    vector<int> labels;
    // Read in the data. This can fail if no valid
    // input filename is given.
    try {
        read_csv(fn_csv, images, labels);
    } catch (cv::Exception& e) {
        cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
        // nothing more we can do
        exit(1);
    }
    // Quit if there are not enough images for this demo.
    if(images.size() <= 1) {
        string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
        CV_Error(Error::StsError, error_message);
    }
    // The following lines simply get the last images from
    // your dataset and remove it from the vector. This is
    // done, so that the training data (which we learn the
    // cv::LBPHFaceRecognizer on) and the test data we test
    // the model with, do not overlap.
    Mat testSample = images[images.size() - 1];
    int testLabel = labels[labels.size() - 1];
    images.pop_back();
    labels.pop_back();
    // The following lines create an LBPH model for
    // face recognition and train it with the images and
    // labels read from the given CSV file.
    //
    // The LBPHFaceRecognizer uses Extended Local Binary Patterns
    // (it's probably configurable with other operators at a later
    // point), and has the following default values
    //
    //      radius = 1
    //      neighbors = 8
    //      grid_x = 8
    //      grid_y = 8
    //
    // So if you want a LBPH FaceRecognizer using a radius of
    // 2 and 16 neighbors, call the factory method with:
    //
    //      cv::face::LBPHFaceRecognizer::create(2, 16);
    //
    // And if you want a threshold (e.g. 123.0) call it with its default values:
    //
    //      cv::face::LBPHFaceRecognizer::create(1,8,8,8,123.0)
    //
    Ptr<LBPHFaceRecognizer> model = LBPHFaceRecognizer::create();
    model->train(images, labels);
    // The following line predicts the label of a given
    // test image:
    int predictedLabel = model->predict(testSample);
    //
    // To get the confidence of a prediction call the model with:
    //
    //      int predictedLabel = -1;
    //      double confidence = 0.0;
    //      model->predict(testSample, predictedLabel, confidence);
    //
    string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
    cout << result_message << endl;
    // First we'll use it to set the threshold of the LBPHFaceRecognizer
    // to 0.0 without retraining the model. This can be useful if
    // you are evaluating the model:
    //
    model->setThreshold(0.0);
    // Now the threshold of this model is set to 0.0. A prediction
    // now returns -1, as it's impossible to have a distance below
    // it
    predictedLabel = model->predict(testSample);
    cout << "Predicted class = " << predictedLabel << endl;
    // Show some informations about the model, as there's no cool
    // Model data to display as in Eigenfaces/Fisherfaces.
    // Due to efficiency reasons the LBP images are not stored
    // within the model:
    cout << "Model Information:" << endl;
    string model_info = format("\tLBPH(radius=%i, neighbors=%i, grid_x=%i, grid_y=%i, threshold=%.2f)",
            model->getRadius(),
            model->getNeighbors(),
            model->getGridX(),
            model->getGridY(),
            model->getThreshold());
    cout << model_info << endl;
    // We could get the histograms for example:
    vector<Mat> histograms = model->getHistograms();
    // But should I really visualize it? Probably the length is interesting:
    cout << "Size of the histograms: " << histograms[0].total() << endl;
    return 0;
}