1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
/*M ///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <float.h>
#include <string>
#include <caffe.pb.h>
namespace cv
{
namespace dnn
{
namespace util
{
template <typename T>
std::string to_string(T value)
{
std::ostringstream stream;
stream << value;
return stream.str();
}
template <typename T>
void make_error(const std::string& message1, const T& message2)
{
std::string error(message1);
error += std::string(util::to_string<int>(message2));
CV_Error(Error::StsBadArg, error.c_str());
}
template <typename T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2)
{
return pair1.first > pair2.first;
}
}
class DetectionOutputLayerImpl : public DetectionOutputLayer
{
public:
unsigned _numClasses;
bool _shareLocation;
int _numLocClasses;
int _backgroundLabelId;
typedef caffe::PriorBoxParameter_CodeType CodeType;
CodeType _codeType;
bool _varianceEncodedInTarget;
int _keepTopK;
float _confidenceThreshold;
int _num;
int _numPriors;
float _nmsThreshold;
int _topK;
enum { _numAxes = 4 };
static const std::string _layerName;
typedef std::map<int, std::vector<caffe::NormalizedBBox> > LabelBBox;
bool getParameterDict(const LayerParams ¶ms,
const std::string ¶meterName,
DictValue& result)
{
if (!params.has(parameterName))
{
return false;
}
result = params.get(parameterName);
return true;
}
template<typename T>
T getParameter(const LayerParams ¶ms,
const std::string ¶meterName,
const size_t &idx=0,
const bool required=true,
const T& defaultValue=T())
{
DictValue dictValue;
bool success = getParameterDict(params, parameterName, dictValue);
if(!success)
{
if(required)
{
std::string message = _layerName;
message += " layer parameter does not contain ";
message += parameterName;
message += " parameter.";
CV_Error(Error::StsBadArg, message);
}
else
{
return defaultValue;
}
}
return dictValue.get<T>(idx);
}
void getCodeType(const LayerParams ¶ms)
{
String codeTypeString = params.get<String>("code_type").toLowerCase();
if (codeTypeString == "corner")
_codeType = caffe::PriorBoxParameter_CodeType_CORNER;
else if (codeTypeString == "center_size")
_codeType = caffe::PriorBoxParameter_CodeType_CENTER_SIZE;
else
_codeType = caffe::PriorBoxParameter_CodeType_CORNER;
}
DetectionOutputLayerImpl(const LayerParams ¶ms)
{
_numClasses = getParameter<unsigned>(params, "num_classes");
_shareLocation = getParameter<bool>(params, "share_location");
_numLocClasses = _shareLocation ? 1 : _numClasses;
_backgroundLabelId = getParameter<int>(params, "background_label_id");
_varianceEncodedInTarget = getParameter<bool>(params, "variance_encoded_in_target", 0, false, false);
_keepTopK = getParameter<int>(params, "keep_top_k");
_confidenceThreshold = getParameter<float>(params, "confidence_threshold", 0, false, -FLT_MAX);
_topK = getParameter<int>(params, "top_k", 0, false, -1);
getCodeType(params);
// Parameters used in nms.
_nmsThreshold = getParameter<float>(params, "nms_threshold");
CV_Assert(_nmsThreshold > 0.);
setParamsFrom(params);
}
void checkInputs(const std::vector<Mat*> &inputs)
{
for (size_t i = 1; i < inputs.size(); i++)
{
CV_Assert(inputs[i]->size == inputs[0]->size);
}
}
void allocate(const std::vector<Mat*> &inputs,
std::vector<Mat> &outputs)
{
CV_Assert(inputs.size() > 0);
CV_Assert(inputs[0]->size[0] == inputs[1]->size[0]);
_num = inputs[0]->size[0];
_numPriors = inputs[2]->size[2] / 4;
CV_Assert((_numPriors * _numLocClasses * 4) == inputs[0]->size[1]);
CV_Assert(int(_numPriors * _numClasses) == inputs[1]->size[1]);
// num() and channels() are 1.
// Since the number of bboxes to be kept is unknown before nms, we manually
// set it to (fake) 1.
// Each row is a 7 dimension std::vector, which stores
// [image_id, label, confidence, xmin, ymin, xmax, ymax]
int outputShape[] = {1, 1, 1, 7};
outputs[0].create(4, outputShape, CV_32F);
}
void forward(std::vector<Mat*> &inputs,
std::vector<Mat> &outputs)
{
const float* locationData = inputs[0]->ptr<float>();
const float* confidenceData = inputs[1]->ptr<float>();
const float* priorData = inputs[2]->ptr<float>();
// Retrieve all location predictions.
std::vector<LabelBBox> allLocationPredictions;
GetLocPredictions(locationData, _num, _numPriors, _numLocClasses,
_shareLocation, &allLocationPredictions);
// Retrieve all confidences.
std::vector<std::map<int, std::vector<float> > > allConfidenceScores;
GetConfidenceScores(confidenceData, _num, _numPriors, _numClasses,
&allConfidenceScores);
// Retrieve all prior bboxes. It is same within a batch since we assume all
// images in a batch are of same dimension.
std::vector<caffe::NormalizedBBox> priorBBoxes;
std::vector<std::vector<float> > priorVariances;
GetPriorBBoxes(priorData, _numPriors, &priorBBoxes, &priorVariances);
// Decode all loc predictions to bboxes.
std::vector<LabelBBox> allDecodedBBoxes;
DecodeBBoxesAll(allLocationPredictions, priorBBoxes, priorVariances, _num,
_shareLocation, _numLocClasses, _backgroundLabelId,
_codeType, _varianceEncodedInTarget, &allDecodedBBoxes);
int numKept = 0;
std::vector<std::map<int, std::vector<int> > > allIndices;
for (int i = 0; i < _num; ++i)
{
const LabelBBox& decodeBBoxes = allDecodedBBoxes[i];
const std::map<int, std::vector<float> >& confidenceScores =
allConfidenceScores[i];
std::map<int, std::vector<int> > indices;
int numDetections = 0;
for (int c = 0; c < (int)_numClasses; ++c)
{
if (c == _backgroundLabelId)
{
// Ignore background class.
continue;
}
if (confidenceScores.find(c) == confidenceScores.end())
{
// Something bad happened if there are no predictions for current label.
util::make_error<int>("Could not find confidence predictions for label ", c);
}
const std::vector<float>& scores = confidenceScores.find(c)->second;
int label = _shareLocation ? -1 : c;
if (decodeBBoxes.find(label) == decodeBBoxes.end())
{
// Something bad happened if there are no predictions for current label.
util::make_error<int>("Could not find location predictions for label ", label);
continue;
}
const std::vector<caffe::NormalizedBBox>& bboxes =
decodeBBoxes.find(label)->second;
ApplyNMSFast(bboxes, scores, _confidenceThreshold, _nmsThreshold,
_topK, &(indices[c]));
numDetections += indices[c].size();
}
if (_keepTopK > -1 && numDetections > _keepTopK)
{
std::vector<std::pair<float, std::pair<int, int> > > scoreIndexPairs;
for (std::map<int, std::vector<int> >::iterator it = indices.begin();
it != indices.end(); ++it)
{
int label = it->first;
const std::vector<int>& labelIndices = it->second;
if (confidenceScores.find(label) == confidenceScores.end())
{
// Something bad happened for current label.
util::make_error<int>("Could not find location predictions for label ", label);
continue;
}
const std::vector<float>& scores = confidenceScores.find(label)->second;
for (size_t j = 0; j < labelIndices.size(); ++j)
{
size_t idx = labelIndices[j];
CV_Assert(idx < scores.size());
scoreIndexPairs.push_back(
std::make_pair(scores[idx], std::make_pair(label, idx)));
}
}
// Keep outputs k results per image.
std::sort(scoreIndexPairs.begin(), scoreIndexPairs.end(),
util::SortScorePairDescend<std::pair<int, int> >);
scoreIndexPairs.resize(_keepTopK);
// Store the new indices.
std::map<int, std::vector<int> > newIndices;
for (size_t j = 0; j < scoreIndexPairs.size(); ++j)
{
int label = scoreIndexPairs[j].second.first;
int idx = scoreIndexPairs[j].second.second;
newIndices[label].push_back(idx);
}
allIndices.push_back(newIndices);
numKept += _keepTopK;
}
else
{
allIndices.push_back(indices);
numKept += numDetections;
}
}
if (numKept == 0)
{
CV_ErrorNoReturn(Error::StsError, "Couldn't find any detections");
return;
}
int outputShape[] = {1, 1, numKept, 7};
outputs[0].create(4, outputShape, CV_32F);
float* outputsData = outputs[0].ptr<float>();
int count = 0;
for (int i = 0; i < _num; ++i)
{
const std::map<int, std::vector<float> >& confidenceScores =
allConfidenceScores[i];
const LabelBBox& decodeBBoxes = allDecodedBBoxes[i];
for (std::map<int, std::vector<int> >::iterator it = allIndices[i].begin();
it != allIndices[i].end(); ++it)
{
int label = it->first;
if (confidenceScores.find(label) == confidenceScores.end())
{
// Something bad happened if there are no predictions for current label.
util::make_error<int>("Could not find confidence predictions for label ", label);
continue;
}
const std::vector<float>& scores = confidenceScores.find(label)->second;
int locLabel = _shareLocation ? -1 : label;
if (decodeBBoxes.find(locLabel) == decodeBBoxes.end())
{
// Something bad happened if there are no predictions for current label.
util::make_error<int>("Could not find location predictions for label ", locLabel);
continue;
}
const std::vector<caffe::NormalizedBBox>& bboxes =
decodeBBoxes.find(locLabel)->second;
std::vector<int>& indices = it->second;
for (size_t j = 0; j < indices.size(); ++j)
{
int idx = indices[j];
outputsData[count * 7] = i;
outputsData[count * 7 + 1] = label;
outputsData[count * 7 + 2] = scores[idx];
caffe::NormalizedBBox clipBBox;
ClipBBox(bboxes[idx], &clipBBox);
outputsData[count * 7 + 3] = clipBBox.xmin();
outputsData[count * 7 + 4] = clipBBox.ymin();
outputsData[count * 7 + 5] = clipBBox.xmax();
outputsData[count * 7 + 6] = clipBBox.ymax();
++count;
}
}
}
}
// Compute bbox size.
float BBoxSize(const caffe::NormalizedBBox& bbox,
const bool normalized=true)
{
if (bbox.xmax() < bbox.xmin() || bbox.ymax() < bbox.ymin())
{
// If bbox is invalid (e.g. xmax < xmin or ymax < ymin), return 0.
return 0;
}
else
{
if (bbox.has_size())
{
return bbox.size();
}
else
{
float width = bbox.xmax() - bbox.xmin();
float height = bbox.ymax() - bbox.ymin();
if (normalized)
{
return width * height;
}
else
{
// If bbox is not within range [0, 1].
return (width + 1) * (height + 1);
}
}
}
}
// Clip the caffe::NormalizedBBox such that the range for each corner is [0, 1].
void ClipBBox(const caffe::NormalizedBBox& bbox,
caffe::NormalizedBBox* clipBBox)
{
clipBBox->set_xmin(std::max(std::min(bbox.xmin(), 1.f), 0.f));
clipBBox->set_ymin(std::max(std::min(bbox.ymin(), 1.f), 0.f));
clipBBox->set_xmax(std::max(std::min(bbox.xmax(), 1.f), 0.f));
clipBBox->set_ymax(std::max(std::min(bbox.ymax(), 1.f), 0.f));
clipBBox->clear_size();
clipBBox->set_size(BBoxSize(*clipBBox));
clipBBox->set_difficult(bbox.difficult());
}
// Decode a bbox according to a prior bbox.
void DecodeBBox(const caffe::NormalizedBBox& priorBBox, const std::vector<float>& priorVariance,
const CodeType codeType, const bool varianceEncodedInTarget,
const caffe::NormalizedBBox& bbox, caffe::NormalizedBBox* decodeBBox)
{
if (codeType == caffe::PriorBoxParameter_CodeType_CORNER)
{
if (varianceEncodedInTarget)
{
// variance is encoded in target, we simply need to add the offset
// predictions.
decodeBBox->set_xmin(priorBBox.xmin() + bbox.xmin());
decodeBBox->set_ymin(priorBBox.ymin() + bbox.ymin());
decodeBBox->set_xmax(priorBBox.xmax() + bbox.xmax());
decodeBBox->set_ymax(priorBBox.ymax() + bbox.ymax());
}
else
{
// variance is encoded in bbox, we need to scale the offset accordingly.
decodeBBox->set_xmin(
priorBBox.xmin() + priorVariance[0] * bbox.xmin());
decodeBBox->set_ymin(
priorBBox.ymin() + priorVariance[1] * bbox.ymin());
decodeBBox->set_xmax(
priorBBox.xmax() + priorVariance[2] * bbox.xmax());
decodeBBox->set_ymax(
priorBBox.ymax() + priorVariance[3] * bbox.ymax());
}
}
else if (codeType == caffe::PriorBoxParameter_CodeType_CENTER_SIZE)
{
float priorWidth = priorBBox.xmax() - priorBBox.xmin();
CV_Assert(priorWidth > 0);
float priorHeight = priorBBox.ymax() - priorBBox.ymin();
CV_Assert(priorHeight > 0);
float priorCenterX = (priorBBox.xmin() + priorBBox.xmax()) / 2.;
float priorCenterY = (priorBBox.ymin() + priorBBox.ymax()) / 2.;
float decodeBBoxCenterX, decodeBBoxCenterY;
float decodeBBoxWidth, decodeBBoxHeight;
if (varianceEncodedInTarget)
{
// variance is encoded in target, we simply need to retore the offset
// predictions.
decodeBBoxCenterX = bbox.xmin() * priorWidth + priorCenterX;
decodeBBoxCenterY = bbox.ymin() * priorHeight + priorCenterY;
decodeBBoxWidth = exp(bbox.xmax()) * priorWidth;
decodeBBoxHeight = exp(bbox.ymax()) * priorHeight;
}
else
{
// variance is encoded in bbox, we need to scale the offset accordingly.
decodeBBoxCenterX =
priorVariance[0] * bbox.xmin() * priorWidth + priorCenterX;
decodeBBoxCenterY =
priorVariance[1] * bbox.ymin() * priorHeight + priorCenterY;
decodeBBoxWidth =
exp(priorVariance[2] * bbox.xmax()) * priorWidth;
decodeBBoxHeight =
exp(priorVariance[3] * bbox.ymax()) * priorHeight;
}
decodeBBox->set_xmin(decodeBBoxCenterX - decodeBBoxWidth / 2.);
decodeBBox->set_ymin(decodeBBoxCenterY - decodeBBoxHeight / 2.);
decodeBBox->set_xmax(decodeBBoxCenterX + decodeBBoxWidth / 2.);
decodeBBox->set_ymax(decodeBBoxCenterY + decodeBBoxHeight / 2.);
}
else
{
CV_Error(Error::StsBadArg, "Unknown LocLossType.");
}
float bboxSize = BBoxSize(*decodeBBox);
decodeBBox->set_size(bboxSize);
}
// Decode a set of bboxes according to a set of prior bboxes.
void DecodeBBoxes(const std::vector<caffe::NormalizedBBox>& priorBBoxes,
const std::vector<std::vector<float> >& priorVariances,
const CodeType codeType, const bool varianceEncodedInTarget,
const std::vector<caffe::NormalizedBBox>& bboxes,
std::vector<caffe::NormalizedBBox>* decodeBBoxes)
{
CV_Assert(priorBBoxes.size() == priorVariances.size());
CV_Assert(priorBBoxes.size() == bboxes.size());
int numBBoxes = priorBBoxes.size();
if (numBBoxes >= 1)
{
CV_Assert(priorVariances[0].size() == 4);
}
decodeBBoxes->clear();
for (int i = 0; i < numBBoxes; ++i)
{
caffe::NormalizedBBox decodeBBox;
DecodeBBox(priorBBoxes[i], priorVariances[i], codeType,
varianceEncodedInTarget, bboxes[i], &decodeBBox);
decodeBBoxes->push_back(decodeBBox);
}
}
// Decode all bboxes in a batch.
void DecodeBBoxesAll(const std::vector<LabelBBox>& allLocPreds,
const std::vector<caffe::NormalizedBBox>& priorBBoxes,
const std::vector<std::vector<float> >& priorVariances,
const size_t num, const bool shareLocation,
const int numLocClasses, const int backgroundLabelId,
const CodeType codeType, const bool varianceEncodedInTarget,
std::vector<LabelBBox>* allDecodeBBoxes)
{
CV_Assert(allLocPreds.size() == num);
allDecodeBBoxes->clear();
allDecodeBBoxes->resize(num);
for (size_t i = 0; i < num; ++i)
{
// Decode predictions into bboxes.
LabelBBox& decodeBBoxes = (*allDecodeBBoxes)[i];
for (int c = 0; c < numLocClasses; ++c)
{
int label = shareLocation ? -1 : c;
if (label == backgroundLabelId)
{
// Ignore background class.
continue;
}
if (allLocPreds[i].find(label) == allLocPreds[i].end())
{
// Something bad happened if there are no predictions for current label.
util::make_error<int>("Could not find location predictions for label ", label);
}
const std::vector<caffe::NormalizedBBox>& labelLocPreds =
allLocPreds[i].find(label)->second;
DecodeBBoxes(priorBBoxes, priorVariances,
codeType, varianceEncodedInTarget,
labelLocPreds, &(decodeBBoxes[label]));
}
}
}
// Get prior bounding boxes from prior_data.
// prior_data: 1 x 2 x num_priors * 4 x 1 blob.
// num_priors: number of priors.
// prior_bboxes: stores all the prior bboxes in the format of caffe::NormalizedBBox.
// prior_variances: stores all the variances needed by prior bboxes.
void GetPriorBBoxes(const float* priorData, const int& numPriors,
std::vector<caffe::NormalizedBBox>* priorBBoxes,
std::vector<std::vector<float> >* priorVariances)
{
priorBBoxes->clear();
priorVariances->clear();
for (int i = 0; i < numPriors; ++i)
{
int startIdx = i * 4;
caffe::NormalizedBBox bbox;
bbox.set_xmin(priorData[startIdx]);
bbox.set_ymin(priorData[startIdx + 1]);
bbox.set_xmax(priorData[startIdx + 2]);
bbox.set_ymax(priorData[startIdx + 3]);
float bboxSize = BBoxSize(bbox);
bbox.set_size(bboxSize);
priorBBoxes->push_back(bbox);
}
for (int i = 0; i < numPriors; ++i)
{
int startIdx = (numPriors + i) * 4;
std::vector<float> var;
for (int j = 0; j < 4; ++j)
{
var.push_back(priorData[startIdx + j]);
}
priorVariances->push_back(var);
}
}
// Scale the caffe::NormalizedBBox w.r.t. height and width.
void ScaleBBox(const caffe::NormalizedBBox& bbox,
const int height, const int width,
caffe::NormalizedBBox* scaleBBox)
{
scaleBBox->set_xmin(bbox.xmin() * width);
scaleBBox->set_ymin(bbox.ymin() * height);
scaleBBox->set_xmax(bbox.xmax() * width);
scaleBBox->set_ymax(bbox.ymax() * height);
scaleBBox->clear_size();
bool normalized = !(width > 1 || height > 1);
scaleBBox->set_size(BBoxSize(*scaleBBox, normalized));
scaleBBox->set_difficult(bbox.difficult());
}
// Get location predictions from loc_data.
// loc_data: num x num_preds_per_class * num_loc_classes * 4 blob.
// num: the number of images.
// num_preds_per_class: number of predictions per class.
// num_loc_classes: number of location classes. It is 1 if share_location is
// true; and is equal to number of classes needed to predict otherwise.
// share_location: if true, all classes share the same location prediction.
// loc_preds: stores the location prediction, where each item contains
// location prediction for an image.
void GetLocPredictions(const float* locData, const int num,
const int numPredsPerClass, const int numLocClasses,
const bool shareLocation, std::vector<LabelBBox>* locPreds)
{
locPreds->clear();
if (shareLocation)
{
CV_Assert(numLocClasses == 1);
}
locPreds->resize(num);
for (int i = 0; i < num; ++i)
{
LabelBBox& labelBBox = (*locPreds)[i];
for (int p = 0; p < numPredsPerClass; ++p)
{
int startIdx = p * numLocClasses * 4;
for (int c = 0; c < numLocClasses; ++c)
{
int label = shareLocation ? -1 : c;
if (labelBBox.find(label) == labelBBox.end())
{
labelBBox[label].resize(numPredsPerClass);
}
labelBBox[label][p].set_xmin(locData[startIdx + c * 4]);
labelBBox[label][p].set_ymin(locData[startIdx + c * 4 + 1]);
labelBBox[label][p].set_xmax(locData[startIdx + c * 4 + 2]);
labelBBox[label][p].set_ymax(locData[startIdx + c * 4 + 3]);
}
}
locData += numPredsPerClass * numLocClasses * 4;
}
}
// Get confidence predictions from conf_data.
// conf_data: num x num_preds_per_class * num_classes blob.
// num: the number of images.
// num_preds_per_class: number of predictions per class.
// num_classes: number of classes.
// conf_preds: stores the confidence prediction, where each item contains
// confidence prediction for an image.
void GetConfidenceScores(const float* confData, const int num,
const int numPredsPerClass, const int numClasses,
std::vector<std::map<int, std::vector<float> > >* confPreds)
{
confPreds->clear();
confPreds->resize(num);
for (int i = 0; i < num; ++i)
{
std::map<int, std::vector<float> >& labelScores = (*confPreds)[i];
for (int p = 0; p < numPredsPerClass; ++p)
{
int startIdx = p * numClasses;
for (int c = 0; c < numClasses; ++c)
{
labelScores[c].push_back(confData[startIdx + c]);
}
}
confData += numPredsPerClass * numClasses;
}
}
// Do non maximum suppression given bboxes and scores.
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
// https://goo.gl/jV3JYS
// bboxes: a set of bounding boxes.
// scores: a set of corresponding confidences.
// score_threshold: a threshold used to filter detection results.
// nms_threshold: a threshold used in non maximum suppression.
// top_k: if not -1, keep at most top_k picked indices.
// indices: the kept indices of bboxes after nms.
void ApplyNMSFast(const std::vector<caffe::NormalizedBBox>& bboxes,
const std::vector<float>& scores,
const float score_threshold,
const float nms_threshold, const int top_k,
std::vector<int>* indices)
{
// Sanity check.
CV_Assert(bboxes.size() == scores.size());
// Get top_k scores (with corresponding indices).
std::vector<std::pair<float, int> > score_index_vec;
GetMaxScoreIndex(scores, score_threshold, top_k, &score_index_vec);
// Do nms.
indices->clear();
while (score_index_vec.size() != 0)
{
const int idx = score_index_vec.front().second;
bool keep = true;
for (size_t k = 0; k < indices->size(); ++k)
{
if (keep)
{
const int kept_idx = (*indices)[k];
float overlap = JaccardOverlap(bboxes[idx], bboxes[kept_idx]);
keep = overlap <= nms_threshold;
}
else
{
break;
}
}
if (keep)
{
indices->push_back(idx);
}
score_index_vec.erase(score_index_vec.begin());
}
}
// Get max scores with corresponding indices.
// scores: a set of scores.
// threshold: only consider scores higher than the threshold.
// top_k: if -1, keep all; otherwise, keep at most top_k.
// score_index_vec: store the sorted (score, index) pair.
void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold,const int top_k,
std::vector<std::pair<float, int> >* score_index_vec)
{
// Generate index score pairs.
for (size_t i = 0; i < scores.size(); ++i)
{
if (scores[i] > threshold)
{
score_index_vec->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(score_index_vec->begin(), score_index_vec->end(),
util::SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < (int)score_index_vec->size())
{
score_index_vec->resize(top_k);
}
}
// Compute the intersection between two bboxes.
void IntersectBBox(const caffe::NormalizedBBox& bbox1,
const caffe::NormalizedBBox& bbox2,
caffe::NormalizedBBox* intersect_bbox) {
if (bbox2.xmin() > bbox1.xmax() || bbox2.xmax() < bbox1.xmin() ||
bbox2.ymin() > bbox1.ymax() || bbox2.ymax() < bbox1.ymin())
{
// Return [0, 0, 0, 0] if there is no intersection.
intersect_bbox->set_xmin(0);
intersect_bbox->set_ymin(0);
intersect_bbox->set_xmax(0);
intersect_bbox->set_ymax(0);
}
else
{
intersect_bbox->set_xmin(std::max(bbox1.xmin(), bbox2.xmin()));
intersect_bbox->set_ymin(std::max(bbox1.ymin(), bbox2.ymin()));
intersect_bbox->set_xmax(std::min(bbox1.xmax(), bbox2.xmax()));
intersect_bbox->set_ymax(std::min(bbox1.ymax(), bbox2.ymax()));
}
}
// Compute the jaccard (intersection over union IoU) overlap between two bboxes.
float JaccardOverlap(const caffe::NormalizedBBox& bbox1,
const caffe::NormalizedBBox& bbox2,
const bool normalized=true)
{
caffe::NormalizedBBox intersect_bbox;
IntersectBBox(bbox1, bbox2, &intersect_bbox);
float intersect_width, intersect_height;
if (normalized)
{
intersect_width = intersect_bbox.xmax() - intersect_bbox.xmin();
intersect_height = intersect_bbox.ymax() - intersect_bbox.ymin();
}
else
{
intersect_width = intersect_bbox.xmax() - intersect_bbox.xmin() + 1;
intersect_height = intersect_bbox.ymax() - intersect_bbox.ymin() + 1;
}
if (intersect_width > 0 && intersect_height > 0)
{
float intersect_size = intersect_width * intersect_height;
float bbox1_size = BBoxSize(bbox1);
float bbox2_size = BBoxSize(bbox2);
return intersect_size / (bbox1_size + bbox2_size - intersect_size);
}
else
{
return 0.;
}
}
};
const std::string DetectionOutputLayerImpl::_layerName = std::string("DetectionOutput");
Ptr<DetectionOutputLayer> DetectionOutputLayer::create(const LayerParams ¶ms)
{
return Ptr<DetectionOutputLayer>(new DetectionOutputLayerImpl(params));
}
}
}