binary_descriptor.cpp 103 KB
Newer Older
biagio montesano's avatar
biagio montesano committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*M///////////////////////////////////////////////////////////////////////////////////////
 //
 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 //
 //  By downloading, copying, installing or using the software you agree to this license.
 //  If you do not agree to this license, do not download, install,
 //  copy or use the software.
 //
 //
 //                           License Agreement
 //                For Open Source Computer Vision Library
 //
 // Copyright (C) 2013, Biagio Montesano, all rights reserved.
 // Third party copyrights are property of their respective owners.
 //
 // Redistribution and use in source and binary forms, with or without modification,
 // are permitted provided that the following conditions are met:
 //
 //   * Redistribution's of source code must retain the above copyright notice,
 //     this list of conditions and the following disclaimer.
 //
 //   * Redistribution's in binary form must reproduce the above copyright notice,
 //     this list of conditions and the following disclaimer in the documentation
 //     and/or other materials provided with the distribution.
 //
 //   * The name of the copyright holders may not be used to endorse or promote products
 //     derived from this software without specific prior written permission.
 //
 // This software is provided by the copyright holders and contributors "as is" and
 // any express or implied warranties, including, but not limited to, the implied
 // warranties of merchantability and fitness for a particular purpose are disclaimed.
 // In no event shall the Intel Corporation or contributors be liable for any direct,
 // indirect, incidental, special, exemplary, or consequential damages
 // (including, but not limited to, procurement of substitute goods or services;
 // loss of use, data, or profits; or business interruption) however caused
 // and on any theory of liability, whether in contract, strict liability,
 // or tort (including negligence or otherwise) arising in any way out of
 // the use of this software, even if advised of the possibility of such damage.
 //
 //M*/
41 42 43

#include "precomp.hpp"

biagio montesano's avatar
biagio montesano committed
44
#define NUM_OF_BANDS 9
45 46 47 48 49 50 51 52
#define Horizontal  255//if |dx|<|dy|;
#define Vertical    0//if |dy|<=|dx|;
#define UpDir       1
#define RightDir    2
#define DownDir     3
#define LeftDir     4
#define TryTime     6
#define SkipEdgePoint 2
biagio montesano's avatar
biagio montesano committed
53

54 55 56
//using namespace cv;
namespace cv
{
57 58
namespace line_descriptor
{
59

biagio montesano's avatar
biagio montesano committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/* combinations of internal indeces for binary descriptor extractor */
static const int combinations[32][2] =
{
{ 0, 1 },
{ 0, 2 },
{ 0, 3 },
{ 0, 4 },
{ 0, 5 },
{ 0, 6 },
{ 1, 2 },
{ 1, 3 },
{ 1, 4 },
{ 1, 5 },
{ 1, 6 },
{ 2, 3 },
{ 2, 4 },
{ 2, 5 },
{ 2, 6 },
{ 2, 7 },
{ 2, 8 },
{ 3, 4 },
{ 3, 5 },
{ 3, 6 },
{ 3, 7 },
{ 3, 8 },
{ 4, 5 },
{ 4, 6 },
{ 4, 7 },
{ 4, 8 },
{ 5, 6 },
{ 5, 7 },
{ 5, 8 },
{ 6, 7 },
{ 6, 8 },
{ 7, 8 } };

/* return default parameters */
BinaryDescriptor::Params::Params()
{
  numOfOctave_ = 1;
  widthOfBand_ = 7;
  reductionRatio = 2;
102
  ksize_ = 5;
biagio montesano's avatar
biagio montesano committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
}

/* setters and getters */
int BinaryDescriptor::getNumOfOctaves()
{
  return params.numOfOctave_;
}

void BinaryDescriptor::setNumOfOctaves( int octaves )
{
  params.numOfOctave_ = octaves;
}

int BinaryDescriptor::getWidthOfBand()
{
  return params.widthOfBand_;
}

void BinaryDescriptor::setWidthOfBand( int width )
{
  params.widthOfBand_ = width;
124 125 126 127 128 129

  /* reserve enough space for EDLine objects and images in Gaussian pyramid */
  edLineVec_.resize( params.numOfOctave_ );
  images_sizes.resize( params.numOfOctave_ );

  for ( int i = 0; i < params.numOfOctave_; i++ )
130
    edLineVec_[i] = Ptr < EDLineDetector > ( new EDLineDetector() );
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

  /* prepare a vector to host local weights F_l*/
  gaussCoefL_.resize( params.widthOfBand_ * 3 );

  /* compute center of central band (every computation involves 2-3 bands) */
  double u = ( params.widthOfBand_ * 3 - 1 ) / 2;

  /* compute exponential part of F_l */
  double sigma = ( params.widthOfBand_ * 2 + 1 ) / 2;  // (widthOfBand_*2+1)/2;
  double invsigma2 = -1 / ( 2 * sigma * sigma );

  /* compute all local weights */
  double dis;
  for ( int i = 0; i < params.widthOfBand_ * 3; i++ )
  {
    dis = i - u;
    gaussCoefL_[i] = exp( dis * dis * invsigma2 );
  }

  /* prepare a vector for global weights F_g*/
  gaussCoefG_.resize( NUM_OF_BANDS * params.widthOfBand_ );

  /* compute center of LSR */
  u = ( NUM_OF_BANDS * params.widthOfBand_ - 1 ) / 2;

  /* compute exponential part of F_g */
  sigma = u;
  invsigma2 = -1 / ( 2 * sigma * sigma );
  for ( int i = 0; i < NUM_OF_BANDS * params.widthOfBand_; i++ )
  {
    dis = i - u;
    gaussCoefG_[i] = exp( dis * dis * invsigma2 );
  }
biagio montesano's avatar
biagio montesano committed
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
}

int BinaryDescriptor::getReductionRatio()
{
  return params.reductionRatio;
}

void BinaryDescriptor::setReductionRatio( int rRatio )
{
  params.reductionRatio = rRatio;
}

/* read parameters from a FileNode object and store them (struct function) */
void BinaryDescriptor::Params::read( const cv::FileNode& fn )
{
  numOfOctave_ = fn["numOfOctave_"];
  widthOfBand_ = fn["widthOfBand_"];
  reductionRatio = fn["reductionRatio"];
}

/* store parameters to a FileStorage object (struct function) */
void BinaryDescriptor::Params::write( cv::FileStorage& fs ) const
{
  fs << "numOfOctave_" << numOfOctave_;
  fs << "numOfBand_" << NUM_OF_BANDS;
  fs << "widthOfBand_" << widthOfBand_;
  fs << "reductionRatio" << reductionRatio;
}

Ptr<BinaryDescriptor> BinaryDescriptor::createBinaryDescriptor()
{
195
  return Ptr < BinaryDescriptor > ( new BinaryDescriptor() );
biagio montesano's avatar
biagio montesano committed
196 197 198 199
}

Ptr<BinaryDescriptor> BinaryDescriptor::createBinaryDescriptor( Params parameters )
{
200
  return Ptr < BinaryDescriptor > ( new BinaryDescriptor( parameters ) );
biagio montesano's avatar
biagio montesano committed
201 202 203 204 205 206
}

/* construct a BinaryDescrptor object and compute external private parameters */
BinaryDescriptor::BinaryDescriptor( const BinaryDescriptor::Params &parameters ) :
    params( parameters )
{
207
  /* reserve enough space for EDLine objects and images in Gaussian pyramid */
208 209
  edLineVec_.resize( params.numOfOctave_ );
  images_sizes.resize( params.numOfOctave_ );
210

211
  for ( int i = 0; i < params.numOfOctave_; i++ )
212
    edLineVec_[i] = Ptr < EDLineDetector > ( new EDLineDetector() );
213

biagio montesano's avatar
biagio montesano committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  /* prepare a vector to host local weights F_l*/
  gaussCoefL_.resize( params.widthOfBand_ * 3 );

  /* compute center of central band (every computation involves 2-3 bands) */
  double u = ( params.widthOfBand_ * 3 - 1 ) / 2;

  /* compute exponential part of F_l */
  double sigma = ( params.widthOfBand_ * 2 + 1 ) / 2;  // (widthOfBand_*2+1)/2;
  double invsigma2 = -1 / ( 2 * sigma * sigma );

  /* compute all local weights */
  double dis;
  for ( int i = 0; i < params.widthOfBand_ * 3; i++ )
  {
    dis = i - u;
    gaussCoefL_[i] = exp( dis * dis * invsigma2 );
  }

  /* prepare a vector for global weights F_g*/
  gaussCoefG_.resize( NUM_OF_BANDS * params.widthOfBand_ );

  /* compute center of LSR */
  u = ( NUM_OF_BANDS * params.widthOfBand_ - 1 ) / 2;

  /* compute exponential part of F_g */
  sigma = u;
  invsigma2 = -1 / ( 2 * sigma * sigma );
  for ( int i = 0; i < NUM_OF_BANDS * params.widthOfBand_; i++ )
  {
    dis = i - u;
    gaussCoefG_[i] = exp( dis * dis * invsigma2 );
  }
}

/* definition of operator () */
void BinaryDescriptor::operator()( InputArray image, InputArray mask, CV_OUT std::vector<KeyLine>& keylines, OutputArray descriptors,
250
    bool useProvidedKeyLines, bool returnFloatDescr ) const
biagio montesano's avatar
biagio montesano committed
251 252 253 254 255 256 257 258 259
{

  /* create some matrix objects */
  cv::Mat imageMat, maskMat, descrMat;

  /* store reference to input matrices */
  imageMat = image.getMat();
  maskMat = mask.getMat();

260 261 262 263 264 265 266 267 268
  /* require drawing KeyLines detection if demanded */
  if( !useProvidedKeyLines )
  {
    keylines.clear();
    BinaryDescriptor *bn = const_cast<BinaryDescriptor*>( this );
    bn->edLineVec_.clear();
    bn->edLineVec_.resize( params.numOfOctave_ );

    for ( int i = 0; i < params.numOfOctave_; i++ )
269
    bn->edLineVec_[i] = Ptr<EDLineDetector>( new EDLineDetector() );
270 271 272 273 274

    detectImpl( imageMat, keylines, maskMat );

  }

biagio montesano's avatar
biagio montesano committed
275
  /* initialize output matrix */
276
  //descriptors.create( Size( 32, (int) keylines.size() ), CV_8UC1 );
biagio montesano's avatar
biagio montesano committed
277
  /* store reference to output matrix */
278 279
  //descrMat = descriptors.getMat();
  /* compute descriptors */
biagio montesano's avatar
biagio montesano committed
280
  if( !useProvidedKeyLines )
281
  computeImpl( imageMat, keylines, descrMat, returnFloatDescr, true );
biagio montesano's avatar
biagio montesano committed
282

283
  else
284
  computeImpl( imageMat, keylines, descrMat, returnFloatDescr, false );
285

286
  descrMat.copyTo( descriptors );
biagio montesano's avatar
biagio montesano committed
287 288 289 290
}

BinaryDescriptor::~BinaryDescriptor()
{
291

biagio montesano's avatar
biagio montesano committed
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
}

/* read parameters from a FileNode object and store them (class function ) */
void BinaryDescriptor::read( const cv::FileNode& fn )
{
  params.read( fn );
}

/* store parameters to a FileStorage object (class function) */
void BinaryDescriptor::write( cv::FileStorage& fs ) const
{
  params.write( fs );
}

/* return norm mode */
int BinaryDescriptor::defaultNorm() const
{
  return NORM_HAMMING;
}

/* return data type */
int BinaryDescriptor::descriptorType() const
{
  return CV_8U;
}

/*return descriptor size */
int BinaryDescriptor::descriptorSize() const
{
  return 32 * 8;
}

/* power function with error management */
static inline int get2Pow( int i )
{
  if( i >= 0 && i <= 7 )
biagio montesano's avatar
biagio montesano committed
328
    return (int) pow( 2, (double) i );
biagio montesano's avatar
biagio montesano committed
329 330 331

  else
  {
biagio montesano's avatar
biagio montesano committed
332
    throw std::runtime_error( "Invalid power argument" );
biagio montesano's avatar
biagio montesano committed
333 334 335
  }
}

336
/* compute Gaussian pyramids */
337
void BinaryDescriptor::computeGaussianPyramid( const Mat& image, const int numOctaves )
338 339 340 341 342 343 344 345 346 347 348 349
{
  /* clear class fields */
  images_sizes.clear();
  octaveImages.clear();

  /* insert input image into pyramid */
  cv::Mat currentMat = image.clone();
  cv::GaussianBlur( currentMat, currentMat, cv::Size( 5, 5 ), 1 );
  octaveImages.push_back( currentMat );
  images_sizes.push_back( currentMat.size() );

  /* fill Gaussian pyramid */
350
  for ( int pyrCounter = 1; pyrCounter < numOctaves; pyrCounter++ )
351 352 353 354 355 356 357 358 359
  {
    /* compute and store next image in pyramid and its size */
    pyrDown( currentMat, currentMat, Size( currentMat.cols / params.reductionRatio, currentMat.rows / params.reductionRatio ) );
    octaveImages.push_back( currentMat );
    images_sizes.push_back( currentMat.size() );
  }
}

/* compute Sobel's derivatives */
360
void BinaryDescriptor::computeSobel( const cv::Mat& image, const int numOctaves )
361 362 363
{

  /* compute Gaussian pyramids */
364
  computeGaussianPyramid( image, numOctaves );
365 366 367 368 369

  /* reinitialize class structures */
  dxImg_vector.clear();
  dyImg_vector.clear();

370 371
//  dxImg_vector.resize( params.numOfOctave_ );
//  dyImg_vector.resize( params.numOfOctave_ );
372

373 374
  dxImg_vector.resize( octaveImages.size() );
  dyImg_vector.resize( octaveImages.size() );
375 376 377 378 379 380 381 382 383 384 385 386

  /* compute derivatives */
  for ( size_t sobelCnt = 0; sobelCnt < octaveImages.size(); sobelCnt++ )
  {
    dxImg_vector[sobelCnt].create( images_sizes[sobelCnt].height, images_sizes[sobelCnt].width, CV_16SC1 );
    dyImg_vector[sobelCnt].create( images_sizes[sobelCnt].height, images_sizes[sobelCnt].width, CV_16SC1 );

    cv::Sobel( octaveImages[sobelCnt], dxImg_vector[sobelCnt], CV_16SC1, 1, 0, 3 );
    cv::Sobel( octaveImages[sobelCnt], dyImg_vector[sobelCnt], CV_16SC1, 0, 1, 3 );
  }
}

biagio montesano's avatar
biagio montesano committed
387 388 389 390 391 392 393
/* utility function for conversion of an LBD descriptor to its binary representation */
unsigned char BinaryDescriptor::binaryConversion( float* f1, float* f2 )
{
  uchar result = 0;
  for ( int i = 0; i < 8; i++ )
  {
    if( f1[i] > f2[i] )
biagio montesano's avatar
biagio montesano committed
394
      result += (uchar) get2Pow( i );
biagio montesano's avatar
biagio montesano committed
395 396 397 398 399 400 401
  }

  return result;

}

/* requires line detection (only one image) */
402
void BinaryDescriptor::detect( const Mat& image, CV_OUT std::vector<KeyLine>& keylines, const Mat& mask )
biagio montesano's avatar
biagio montesano committed
403
{
404 405 406 407 408 409
  if( image.data == NULL )
  {
    std::cout << "Error: input image for detection is empty" << std::endl;
    return;
  }

biagio montesano's avatar
biagio montesano committed
410
  if( mask.data != NULL && ( mask.size() != image.size() || mask.type() != CV_8UC1 ) )
411
  throw std::runtime_error( "Mask error while detecting lines: please check its dimensions and that data type is CV_8UC1" );
biagio montesano's avatar
biagio montesano committed
412 413

  else
414
  detectImpl( image, keylines, mask );
biagio montesano's avatar
biagio montesano committed
415 416 417
}

/* requires line detection (more than one image) */
418
void BinaryDescriptor::detect( const std::vector<Mat>& images, std::vector<std::vector<KeyLine> >& keylines, const std::vector<Mat>& masks ) const
biagio montesano's avatar
biagio montesano committed
419
{
420 421 422 423 424 425 426

  if( images.size() == 0 )
  {
    std::cout << "Error: input image for detection is empty" << std::endl;
    return;
  }

biagio montesano's avatar
biagio montesano committed
427 428 429 430
  /* detect lines from each image */
  for ( size_t counter = 0; counter < images.size(); counter++ )
  {
    if( masks[counter].data != NULL && ( masks[counter].size() != images[counter].size() || masks[counter].type() != CV_8UC1 ) )
biagio montesano's avatar
biagio montesano committed
431
      throw std::runtime_error( "Masks error while detecting lines: please check their dimensions and that data types are CV_8UC1" );
biagio montesano's avatar
biagio montesano committed
432

biagio montesano's avatar
biagio montesano committed
433 434
    else
      detectImpl( images[counter], keylines[counter], masks[counter] );
biagio montesano's avatar
biagio montesano committed
435 436 437
  }
}

438
void BinaryDescriptor::detectImpl( const Mat& imageSrc, std::vector<KeyLine>& keylines, const Mat& mask ) const
biagio montesano's avatar
biagio montesano committed
439 440 441
{

  cv::Mat image;
442
  if( imageSrc.channels() != 1 )
443
  {
biagio montesano's avatar
biagio montesano committed
444
    cvtColor( imageSrc, image, COLOR_BGR2GRAY );
445
  }
biagio montesano's avatar
biagio montesano committed
446 447 448 449 450
  else
    image = imageSrc.clone();

  /*check whether image depth is different from 0 */
  if( image.depth() != 0 )
biagio montesano's avatar
biagio montesano committed
451
    throw std::runtime_error( "Warning, depth image!= 0" );
biagio montesano's avatar
biagio montesano committed
452 453 454 455 456 457

  /* create a pointer to self */
  BinaryDescriptor *bn = const_cast<BinaryDescriptor*>( this );

  /* detect and arrange lines across octaves */
  ScaleLines sl;
458
  bn->OctaveKeyLines( image, sl );
biagio montesano's avatar
biagio montesano committed
459 460 461 462 463 464 465 466 467 468 469 470 471

  /* fill KeyLines vector */
  for ( int i = 0; i < (int) sl.size(); i++ )
  {
    for ( size_t j = 0; j < sl[i].size(); j++ )
    {
      /* get current line */
      OctaveSingleLine osl = sl[i][j];

      /* create a KeyLine object */
      KeyLine kl;

      /* fill KeyLine's fields */
472 473 474 475
      kl.startPointX = osl.startPointX;  //extremes[0];
      kl.startPointY = osl.startPointY;  //extremes[1];
      kl.endPointX = osl.endPointX;  //extremes[2];
      kl.endPointY = osl.endPointY;  //extremes[3];
biagio montesano's avatar
biagio montesano committed
476 477 478 479 480 481 482 483 484 485 486 487
      kl.sPointInOctaveX = osl.sPointInOctaveX;
      kl.sPointInOctaveY = osl.sPointInOctaveY;
      kl.ePointInOctaveX = osl.ePointInOctaveX;
      kl.ePointInOctaveY = osl.ePointInOctaveY;
      kl.lineLength = osl.lineLength;
      kl.numOfPixels = osl.numOfPixels;

      kl.angle = osl.direction;
      kl.class_id = i;
      kl.octave = osl.octaveCount;
      kl.size = ( osl.endPointX - osl.startPointX ) * ( osl.endPointY - osl.startPointY );
      kl.response = osl.lineLength / max( images_sizes[osl.octaveCount].width, images_sizes[osl.octaveCount].height );
488
      kl.pt = Point2f( ( osl.endPointX + osl.startPointX ) / 2, ( osl.endPointY + osl.startPointY ) / 2 );
biagio montesano's avatar
biagio montesano committed
489 490 491 492 493 494 495 496 497 498 499 500 501

      /* store KeyLine */
      keylines.push_back( kl );
    }

  }

  /* delete undesired KeyLines, according to input mask */
  if( !mask.empty() )
  {
    for ( size_t keyCounter = 0; keyCounter < keylines.size(); keyCounter++ )
    {
      KeyLine kl = keylines[keyCounter];
502
      if( mask.at < uchar > ( (int) kl.startPointY, (int) kl.startPointX ) == 0 && mask.at < uchar > ( (int) kl.endPointY, (int) kl.endPointX ) == 0 )
biagio montesano's avatar
biagio montesano committed
503 504 505 506 507 508 509
        keylines.erase( keylines.begin() + keyCounter );
    }
  }

}

/* requires descriptors computation (only one image) */
510
void BinaryDescriptor::compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyLine>& keylines, CV_OUT Mat& descriptors,
511
    bool returnFloatDescr ) const
biagio montesano's avatar
biagio montesano committed
512
{
513
  computeImpl( image, keylines, descriptors, returnFloatDescr, false );
biagio montesano's avatar
biagio montesano committed
514 515 516
}

/* requires descriptors computation (more than one image) */
517
void BinaryDescriptor::compute( const std::vector<Mat>& images, std::vector<std::vector<KeyLine> >& keylines, std::vector<Mat>& descriptors,
518
                                bool returnFloatDescr ) const
biagio montesano's avatar
biagio montesano committed
519 520
{
  for ( size_t i = 0; i < images.size(); i++ )
521
    computeImpl( images[i], keylines[i], descriptors[i], returnFloatDescr, false );
biagio montesano's avatar
biagio montesano committed
522 523 524
}

/* implementation of descriptors computation */
525 526
void BinaryDescriptor::computeImpl( const Mat& imageSrc, std::vector<KeyLine>& keylines, Mat& descriptors, bool returnFloatDescr,
                                    bool useDetectionData ) const
biagio montesano's avatar
biagio montesano committed
527 528 529
{
  /* convert input image to gray scale */
  cv::Mat image;
530
  if( imageSrc.channels() != 1 )
biagio montesano's avatar
biagio montesano committed
531 532 533 534 535 536
    cvtColor( imageSrc, image, COLOR_BGR2GRAY );
  else
    image = imageSrc.clone();

  /*check whether image's depth is different from 0 */
  if( image.depth() != 0 )
biagio montesano's avatar
biagio montesano committed
537
    throw std::runtime_error( "Error, depth of image != 0" );
biagio montesano's avatar
biagio montesano committed
538 539 540 541 542 543 544 545

  /* keypoints list can't be empty */
  if( keylines.size() == 0 )
  {
    std::cout << "Error: keypoint list is empty" << std::endl;
    return;
  }

546 547
  BinaryDescriptor* bd = const_cast<BinaryDescriptor*>( this );

548
  /* get maximum class_id and octave*/
biagio montesano's avatar
biagio montesano committed
549
  int numLines = 0;
550
  int octaveIndex = -1;
biagio montesano's avatar
biagio montesano committed
551 552 553 554
  for ( size_t l = 0; l < keylines.size(); l++ )
  {
    if( keylines[l].class_id > numLines )
      numLines = keylines[l].class_id;
555 556 557

    if( keylines[l].octave > octaveIndex )
      octaveIndex = keylines[l].octave;
biagio montesano's avatar
biagio montesano committed
558 559
  }

560 561 562
  if( !useDetectionData )
    bd->computeSobel( image, octaveIndex + 1 );

biagio montesano's avatar
biagio montesano committed
563 564
  /* create a ScaleLines object */
  OctaveSingleLine fictiousOSL;
565 566 567 568
//  fictiousOSL.octaveCount = params.numOfOctave_ + 1;
//  LinesVec lv( params.numOfOctave_, fictiousOSL );
  fictiousOSL.octaveCount = octaveIndex + 1;
  LinesVec lv( octaveIndex + 1, fictiousOSL );
biagio montesano's avatar
biagio montesano committed
569 570 571 572
  ScaleLines sl( numLines + 1, lv );

  /* create a map to record association between KeyLines and their position
   in ScaleLines vector */
573
  std::map<std::pair<int, int>, size_t> correspondences;
biagio montesano's avatar
biagio montesano committed
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

  /* fill ScaleLines object */
  for ( size_t slCounter = 0; slCounter < keylines.size(); slCounter++ )
  {
    /* get a KeyLine object and create a new line */
    KeyLine kl = keylines[slCounter];
    OctaveSingleLine osl;

    /* insert data in newly created line */
    osl.startPointX = kl.startPointX;
    osl.startPointY = kl.startPointY;
    osl.endPointX = kl.endPointX;
    osl.endPointY = kl.endPointY;
    osl.sPointInOctaveX = kl.sPointInOctaveX;
    osl.sPointInOctaveY = kl.sPointInOctaveY;
    osl.ePointInOctaveX = kl.ePointInOctaveX;
    osl.ePointInOctaveY = kl.ePointInOctaveY;
    osl.lineLength = kl.lineLength;
    osl.numOfPixels = kl.numOfPixels;
    osl.salience = kl.response;

    osl.direction = kl.angle;
    osl.octaveCount = kl.octave;

    /* store new line */
    sl[kl.class_id][kl.octave] = osl;

    /* update map */
    int id = kl.class_id;
    int oct = kl.octave;
604
    correspondences.insert( std::pair<std::pair<int, int>, size_t>( std::pair<int, int>( id, oct ), slCounter ) );
biagio montesano's avatar
biagio montesano committed
605 606 607 608 609 610 611
  }

  /* delete useless OctaveSingleLines */
  for ( size_t i = 0; i < sl.size(); i++ )
  {
    for ( size_t j = 0; j < sl[i].size(); j++ )
    {
612 613
      //if( (int) ( sl[i][j] ).octaveCount > params.numOfOctave_ )
      if( (int) ( sl[i][j] ).octaveCount > octaveIndex )
biagio montesano's avatar
biagio montesano committed
614 615 616 617 618
        ( sl[i] ).erase( ( sl[i] ).begin() + j );
    }
  }

  /* compute LBD descriptors */
619
  bd->computeLBD( sl, useDetectionData );
620 621 622

  /* resize output matrix */
  if( !returnFloatDescr )
623
    descriptors = cv::Mat( (int) keylines.size(), 32, CV_8UC1 );
624 625

  else
626
    descriptors = cv::Mat( (int) keylines.size(), NUM_OF_BANDS * 8, CV_32FC1 );
biagio montesano's avatar
biagio montesano committed
627 628

  /* fill output matrix with descriptors */
629
  for ( int k = 0; k < (int) sl.size(); k++ )
biagio montesano's avatar
biagio montesano committed
630
  {
631
    for ( int lineC = 0; lineC < (int) sl[k].size(); lineC++ )
biagio montesano's avatar
biagio montesano committed
632 633 634
    {
      /* get original index of keypoint */
      int lineOctave = ( sl[k][lineC] ).octaveCount;
635
      int originalIndex = (int)correspondences.find( std::pair<int, int>( k, lineOctave ) )->second;
biagio montesano's avatar
biagio montesano committed
636

637 638 639 640
      if( !returnFloatDescr )
      {
        /* get a pointer to correspondent row in output matrix */
        uchar* pointerToRow = descriptors.ptr( originalIndex );
biagio montesano's avatar
biagio montesano committed
641

642 643 644 645 646 647
        /* get LBD data */
        float* desVec = sl[k][lineC].descriptor.data();

        /* fill current row with binary descriptor */
        for ( int comb = 0; comb < 32; comb++ )
        {
648
          *pointerToRow = bd->binaryConversion( &desVec[8 * combinations[comb][0]], &desVec[8 * combinations[comb][1]] );
649 650 651
          pointerToRow++;
        }
      }
biagio montesano's avatar
biagio montesano committed
652

653
      else
biagio montesano's avatar
biagio montesano committed
654
      {
655
        /* get a pointer to correspondent row in output matrix */
656
        float* pointerToRow = descriptors.ptr<float>( originalIndex );
657 658 659 660

        /* get LBD data */
        std::vector<float> desVec = sl[k][lineC].descriptor;

661
        for ( int count = 0; count < (int) desVec.size(); count++ )
662 663 664 665
        {
          *pointerToRow = desVec[count];
          pointerToRow++;
        }
biagio montesano's avatar
biagio montesano committed
666 667 668 669 670 671 672
      }

    }
  }

}

673
int BinaryDescriptor::OctaveKeyLines( cv::Mat& image, ScaleLines &keyLines )
674 675 676 677 678 679 680 681
{

  /* final number of extracted lines */
  unsigned int numOfFinalLine = 0;

  /* sigma values and reduction factor used in Gaussian pyramids */
  float preSigma2 = 0;  //orignal image is not blurred, has zero sigma;
  float curSigma2 = 1.0;  //[sqrt(2)]^0=1;
682
  double factor = sqrt( 2 );  //the down sample factor between connective two octave images
683 684 685 686 687 688 689 690 691 692 693

  /* loop over number of octaves */
  for ( int octaveCount = 0; octaveCount < params.numOfOctave_; octaveCount++ )
  {
    /* matrix storing results from blurring processes */
    cv::Mat blur;

    /* apply Gaussian blur */
    float increaseSigma = sqrt( curSigma2 - preSigma2 );
    cv::GaussianBlur( image, blur, cv::Size( params.ksize_, params.ksize_ ), increaseSigma );
    images_sizes[octaveCount] = blur.size();
694

695
    /* for current octave, extract lines */
696
    if( ( edLineVec_[octaveCount]->EDline( blur ) ) != 1 )
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    {
      return -1;
    }

    /* update number of total extracted lines */
    numOfFinalLine += edLineVec_[octaveCount]->lines_.numOfLines;

    /* resize image for next level of pyramid */
    cv::resize( blur, image, cv::Size(), ( 1.f / factor ), ( 1.f / factor ) );

    /* update sigma values */
    preSigma2 = curSigma2;
    curSigma2 = curSigma2 * 2;

  } /* end of loop over number of octaves */

  /* prepare a vector to store octave information associated to extracted lines */
714
  std::vector < OctaveLine > octaveLines( numOfFinalLine );
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

  /* set lines' counter to 0 for reuse */
  numOfFinalLine = 0;

  /* counter to give a unique ID to lines in LineVecs */
  unsigned int lineIDInScaleLineVec = 0;

  /* floats to compute lines' lengths */
  float dx, dy;

  /* loop over lines extracted from scale 0 (original image) */
  for ( unsigned int lineCurId = 0; lineCurId < edLineVec_[0]->lines_.numOfLines; lineCurId++ )
  {
    /* FOR CURRENT LINE: */

    /* set octave from which it was extracted */
    octaveLines[numOfFinalLine].octaveCount = 0;
    /* set ID within its octave */
    octaveLines[numOfFinalLine].lineIDInOctave = lineCurId;
    /* set a unique ID among all lines extracted in all octaves */
    octaveLines[numOfFinalLine].lineIDInScaleLineVec = lineIDInScaleLineVec;

    /* compute absolute value of difference between X coordinates of line's extreme points */
    dx = fabs( edLineVec_[0]->lineEndpoints_[lineCurId][0] - edLineVec_[0]->lineEndpoints_[lineCurId][2] );
    /* compute absolute value of difference between Y coordinates of line's extreme points */
    dy = fabs( edLineVec_[0]->lineEndpoints_[lineCurId][1] - edLineVec_[0]->lineEndpoints_[lineCurId][3] );
    /* compute line's length */
    octaveLines[numOfFinalLine].lineLength = sqrt( dx * dx + dy * dy );

    /* update counters */
    numOfFinalLine++;
    lineIDInScaleLineVec++;
  }

  /* create and fill an array to store scale factors */
  float *scale = new float[params.numOfOctave_];
  scale[0] = 1;
  for ( int octaveCount = 1; octaveCount < params.numOfOctave_; octaveCount++ )
  {
754
    scale[octaveCount] = (float) ( factor * scale[octaveCount - 1] );
755 756 757 758
  }

  /* some variables' declarations */
  float rho1, rho2, tempValue;
759
  float direction, diffNear, length;
760 761 762 763 764 765 766
  unsigned int octaveID, lineIDInOctave;

  /*more than one octave image, organize lines in scale space.
   *lines corresponding to the same line in octave images should have the same index in the ScaleLineVec */
  if( params.numOfOctave_ > 1 )
  {
    /* some other variables' declarations */
767
    double twoPI = 2 * M_PI;
768
    unsigned int closeLineID = 0;
769 770 771 772 773 774 775 776 777 778 779 780 781
    float endPointDis, minEndPointDis, minLocalDis, maxLocalDis;
    float lp0, lp1, lp2, lp3, np0, np1, np2, np3;

    /* loop over list of octaves */
    for ( int octaveCount = 1; octaveCount < params.numOfOctave_; octaveCount++ )
    {
      /*for each line in current octave image, find their corresponding lines in the octaveLines,
       *give them the same value of lineIDInScaleLineVec*/

      /* loop over list of lines extracted from current octave */
      for ( unsigned int lineCurId = 0; lineCurId < edLineVec_[octaveCount]->lines_.numOfLines; lineCurId++ )
      {
        /* get (scaled) known term from equation of current line */
782
        rho1 = (float) ( scale[octaveCount] * fabs( edLineVec_[octaveCount]->lineEquations_[lineCurId][2] ) );
783 784 785

        /*nearThreshold depends on the distance of the image coordinate origin to current line.
         *so nearThreshold = rho1 * nearThresholdRatio, where nearThresholdRatio = 1-cos(10*pi/180) = 0.0152*/
786
        tempValue = (float) ( rho1 * 0.0152 );
787 788
        float diffNearThreshold = ( tempValue > 6 ) ? ( tempValue ) : 6;
        diffNearThreshold = ( diffNearThreshold < 12 ) ? diffNearThreshold : 12;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

        /* compute scaled lenght of current line */
        dx = fabs( edLineVec_[octaveCount]->lineEndpoints_[lineCurId][0] - edLineVec_[octaveCount]->lineEndpoints_[lineCurId][2] );  //x1-x2
        dy = fabs( edLineVec_[octaveCount]->lineEndpoints_[lineCurId][1] - edLineVec_[octaveCount]->lineEndpoints_[lineCurId][3] );  //y1-y2
        length = scale[octaveCount] * sqrt( dx * dx + dy * dy );

        minEndPointDis = 12;
        /* loop over the octave representations of all lines */
        for ( unsigned int lineNextId = 0; lineNextId < numOfFinalLine; lineNextId++ )
        {
          /* if a line from same octave is encountered,
           a comparison with it shouldn't be considered */
          octaveID = octaveLines[lineNextId].octaveCount;
          if( (int) octaveID == octaveCount )
          {  //lines in the same layer of octave image should not be compared.
            break;
          }

          /* take ID in octave of line to be compared */
          lineIDInOctave = octaveLines[lineNextId].lineIDInOctave;

          /*first check whether current line and next line are parallel.
           *If line1:a1*x+b1*y+c1=0 and line2:a2*x+b2*y+c2=0 are parallel, then
           *-a1/b1=-a2/b2, i.e., a1b2=b1a2.
           *we define parallel=fabs(a1b2-b1a2)
           *note that, in EDLine class, we have normalized the line equations
           *to make a1^2+ b1^2 = a2^2+ b2^2 = 1*/
          direction = fabs( edLineVec_[octaveCount]->lineDirection_[lineCurId] - edLineVec_[octaveID]->lineDirection_[lineIDInOctave] );

          /* the angle between two lines are larger than 10degrees
           (i.e. 10*pi/180=0.1745), they are not close to parallel */
          if( direction > 0.1745 && ( twoPI - direction > 0.1745 ) )
          {
            continue;
          }
          /*now check whether current line and next line are near to each other.
           *If line1:a1*x+b1*y+c1=0 and line2:a2*x+b2*y+c2=0 are near in image, then
           *rho1 = |a1*0+b1*0+c1|/sqrt(a1^2+b1^2) and rho2 = |a2*0+b2*0+c2|/sqrt(a2^2+b2^2) should close.
           *In our case, rho1 = |c1| and rho2 = |c2|, because sqrt(a1^2+b1^2) = sqrt(a2^2+b2^2) = 1;
           *note that, lines are in different octave images, so we define near =  fabs(scale*rho1 - rho2) or
           *where scale is the scale factor between to octave images*/

          /* get known term from equation to be compared */
832
          rho2 = (float) ( scale[octaveID] * fabs( edLineVec_[octaveID]->lineEquations_[lineIDInOctave][2] ) );
833
          /* compute difference between known ters */
834
          diffNear = fabs( rho1 - rho2 );
835 836

          /* two lines are not close in the image */
837
          if( diffNear > diffNearThreshold )
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
          {
            continue;
          }

          /*now check the end points distance between two lines, the scale of  distance is in the original image size.
           * find the minimal and maximal end points distance*/

          /* get the extreme points of the two lines */
          lp0 = scale[octaveCount] * edLineVec_[octaveCount]->lineEndpoints_[lineCurId][0];
          lp1 = scale[octaveCount] * edLineVec_[octaveCount]->lineEndpoints_[lineCurId][1];
          lp2 = scale[octaveCount] * edLineVec_[octaveCount]->lineEndpoints_[lineCurId][2];
          lp3 = scale[octaveCount] * edLineVec_[octaveCount]->lineEndpoints_[lineCurId][3];
          np0 = scale[octaveID] * edLineVec_[octaveID]->lineEndpoints_[lineIDInOctave][0];
          np1 = scale[octaveID] * edLineVec_[octaveID]->lineEndpoints_[lineIDInOctave][1];
          np2 = scale[octaveID] * edLineVec_[octaveID]->lineEndpoints_[lineIDInOctave][2];
          np3 = scale[octaveID] * edLineVec_[octaveID]->lineEndpoints_[lineIDInOctave][3];

          /* get the distance between the two leftmost extremes of lines
           L1(0,1)<->L2(0,1) */
          dx = lp0 - np0;
          dy = lp1 - np1;
          endPointDis = sqrt( dx * dx + dy * dy );

          /* set momentaneously min and max distance between lines to
           the one between left extremes */
          minLocalDis = endPointDis;
          maxLocalDis = endPointDis;

          /* compute distance between right extremes
           L1(2,3)<->L2(2,3) */
          dx = lp2 - np2;
          dy = lp3 - np3;
          endPointDis = sqrt( dx * dx + dy * dy );

          /* update (if necessary) min and max distance between lines */
          minLocalDis = ( endPointDis < minLocalDis ) ? endPointDis : minLocalDis;
          maxLocalDis = ( endPointDis > maxLocalDis ) ? endPointDis : maxLocalDis;

          /* compute distance between left extreme of current line and
           right extreme of line to be compared
           L1(0,1)<->L2(2,3) */
          dx = lp0 - np2;
          dy = lp1 - np3;
          endPointDis = sqrt( dx * dx + dy * dy );

          /* update (if necessary) min and max distance between lines */
          minLocalDis = ( endPointDis < minLocalDis ) ? endPointDis : minLocalDis;
          maxLocalDis = ( endPointDis > maxLocalDis ) ? endPointDis : maxLocalDis;

          /* compute distance between right extreme of current line and
           left extreme of line to be compared
           L1(2,3)<->L2(0,1) */
          dx = lp2 - np0;
          dy = lp3 - np1;
          endPointDis = sqrt( dx * dx + dy * dy );

          /* update (if necessary) min and max distance between lines */
          minLocalDis = ( endPointDis < minLocalDis ) ? endPointDis : minLocalDis;
          maxLocalDis = ( endPointDis > maxLocalDis ) ? endPointDis : maxLocalDis;

          /* check whether conditions for considering line to be compared
           worth to be inserted in the same LineVec are satisfied */
          if( ( maxLocalDis < 0.8 * ( length + octaveLines[lineNextId].lineLength ) ) && ( minLocalDis < minEndPointDis ) )
          {  //keep the closest line
            minEndPointDis = minLocalDis;
            closeLineID = lineNextId;
          }
        }

        /* add current line into octaveLines */
        if( minEndPointDis < 12 )
        {
          octaveLines[numOfFinalLine].lineIDInScaleLineVec = octaveLines[closeLineID].lineIDInScaleLineVec;
        }
        else
        {
          octaveLines[numOfFinalLine].lineIDInScaleLineVec = lineIDInScaleLineVec;
          lineIDInScaleLineVec++;
        }
        octaveLines[numOfFinalLine].octaveCount = octaveCount;
        octaveLines[numOfFinalLine].lineIDInOctave = lineCurId;
        octaveLines[numOfFinalLine].lineLength = length;
        numOfFinalLine++;
      }
    }  //end for(unsigned int octaveCount = 1; octaveCount<numOfOctave_; octaveCount++)
  }  //end if(numOfOctave_>1)

  ////////////////////////////////////
  //Reorganize the detected lines into keyLines
  keyLines.clear();
  keyLines.resize( lineIDInScaleLineVec );
  unsigned int tempID;
  float s1, e1, s2, e2;
  bool shouldChange;
  OctaveSingleLine singleLine;
  for ( unsigned int lineID = 0; lineID < numOfFinalLine; lineID++ )
  {
    lineIDInOctave = octaveLines[lineID].lineIDInOctave;
    octaveID = octaveLines[lineID].octaveCount;
    direction = edLineVec_[octaveID]->lineDirection_[lineIDInOctave];
    singleLine.octaveCount = octaveID;
    singleLine.direction = direction;
    singleLine.lineLength = octaveLines[lineID].lineLength;
    singleLine.salience = edLineVec_[octaveID]->lineSalience_[lineIDInOctave];
    singleLine.numOfPixels = edLineVec_[octaveID]->lines_.sId[lineIDInOctave + 1] - edLineVec_[octaveID]->lines_.sId[lineIDInOctave];
    //decide the start point and end point
    shouldChange = false;
    s1 = edLineVec_[octaveID]->lineEndpoints_[lineIDInOctave][0];  //sx
    s2 = edLineVec_[octaveID]->lineEndpoints_[lineIDInOctave][1];  //sy
    e1 = edLineVec_[octaveID]->lineEndpoints_[lineIDInOctave][2];  //ex
    e2 = edLineVec_[octaveID]->lineEndpoints_[lineIDInOctave][3];  //ey
    dx = e1 - s1;  //ex-sx
    dy = e2 - s2;  //ey-sy
    if( direction >= -0.75 * M_PI && direction < -0.25 * M_PI )
    {
      if( dy > 0 )
      {
        shouldChange = true;
      }
    }
    if( direction >= -0.25 * M_PI && direction < 0.25 * M_PI )
    {
      if( dx < 0 )
      {
        shouldChange = true;
      }
    }
    if( direction >= 0.25 * M_PI && direction < 0.75 * M_PI )
    {
      if( dy < 0 )
      {
        shouldChange = true;
      }
    }
    if( ( direction >= 0.75 * M_PI && direction < M_PI ) || ( direction >= -M_PI && direction < -0.75 * M_PI ) )
    {
      if( dx > 0 )
      {
        shouldChange = true;
      }
    }
    tempValue = scale[octaveID];
    if( shouldChange )
    {
      singleLine.sPointInOctaveX = e1;
      singleLine.sPointInOctaveY = e2;
      singleLine.ePointInOctaveX = s1;
      singleLine.ePointInOctaveY = s2;
      singleLine.startPointX = tempValue * e1;
      singleLine.startPointY = tempValue * e2;
      singleLine.endPointX = tempValue * s1;
      singleLine.endPointY = tempValue * s2;
    }
    else
    {
      singleLine.sPointInOctaveX = s1;
      singleLine.sPointInOctaveY = s2;
      singleLine.ePointInOctaveX = e1;
      singleLine.ePointInOctaveY = e2;
      singleLine.startPointX = tempValue * s1;
      singleLine.startPointY = tempValue * s2;
      singleLine.endPointX = tempValue * e1;
      singleLine.endPointY = tempValue * e2;
    }
    tempID = octaveLines[lineID].lineIDInScaleLineVec;
    keyLines[tempID].push_back( singleLine );
  }

  delete[] scale;
  return 1;
}

1010
int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData )
biagio montesano's avatar
biagio montesano committed
1011 1012
{
  //the default length of the band is the line length.
1013
  short numOfFinalLine = (short) keyLines.size();
biagio montesano's avatar
biagio montesano committed
1014 1015
  float *dL = new float[2];  //line direction cos(dir), sin(dir)
  float *dO = new float[2];  //the clockwise orthogonal vector of line direction.
1016
  short heightOfLSP = (short) ( params.widthOfBand_ * NUM_OF_BANDS );  //the height of line support region;
1017
  short descriptor_size = NUM_OF_BANDS * 8;  //each band, we compute the m( pgdL, ngdL,  pgdO, ngdO) and std( pgdL, ngdL,  pgdO, ngdO);
biagio montesano's avatar
biagio montesano committed
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
  float pgdLRowSum;  //the summation of {g_dL |g_dL>0 } for each row of the region;
  float ngdLRowSum;  //the summation of {g_dL |g_dL<0 } for each row of the region;
  float pgdL2RowSum;  //the summation of {g_dL^2 |g_dL>0 } for each row of the region;
  float ngdL2RowSum;  //the summation of {g_dL^2 |g_dL<0 } for each row of the region;
  float pgdORowSum;  //the summation of {g_dO |g_dO>0 } for each row of the region;
  float ngdORowSum;  //the summation of {g_dO |g_dO<0 } for each row of the region;
  float pgdO2RowSum;  //the summation of {g_dO^2 |g_dO>0 } for each row of the region;
  float ngdO2RowSum;  //the summation of {g_dO^2 |g_dO<0 } for each row of the region;

  float *pgdLBandSum = new float[NUM_OF_BANDS];  //the summation of {g_dL |g_dL>0 } for each band of the region;
  float *ngdLBandSum = new float[NUM_OF_BANDS];  //the summation of {g_dL |g_dL<0 } for each band of the region;
  float *pgdL2BandSum = new float[NUM_OF_BANDS];  //the summation of {g_dL^2 |g_dL>0 } for each band of the region;
  float *ngdL2BandSum = new float[NUM_OF_BANDS];  //the summation of {g_dL^2 |g_dL<0 } for each band of the region;
  float *pgdOBandSum = new float[NUM_OF_BANDS];  //the summation of {g_dO |g_dO>0 } for each band of the region;
  float *ngdOBandSum = new float[NUM_OF_BANDS];  //the summation of {g_dO |g_dO<0 } for each band of the region;
  float *pgdO2BandSum = new float[NUM_OF_BANDS];  //the summation of {g_dO^2 |g_dO>0 } for each band of the region;
  float *ngdO2BandSum = new float[NUM_OF_BANDS];  //the summation of {g_dO^2 |g_dO<0 } for each band of the region;

  short numOfBitsBand = NUM_OF_BANDS * sizeof(float);
  short lengthOfLSP;  //the length of line support region, varies with lines
  short halfHeight = ( heightOfLSP - 1 ) / 2;
  short halfWidth;
  short bandID;
  float coefInGaussion;
  float lineMiddlePointX, lineMiddlePointY;
  float sCorX, sCorY, sCorX0, sCorY0;
  short tempCor, xCor, yCor;  //pixel coordinates in image plane
  short dx, dy;
  float gDL;  //store the gradient projection of pixels in support region along dL vector
  float gDO;  //store the gradient projection of pixels in support region along dO vector
  short imageWidth, imageHeight, realWidth;
  short *pdxImg, *pdyImg;
  float *desVec;

  short sameLineSize;
  short octaveCount;
  OctaveSingleLine *pSingleLine;
  /* loop over list of LineVec */
  for ( short lineIDInScaleVec = 0; lineIDInScaleVec < numOfFinalLine; lineIDInScaleVec++ )
  {
1058
    sameLineSize = (short) ( keyLines[lineIDInScaleVec].size() );
biagio montesano's avatar
biagio montesano committed
1059 1060 1061 1062 1063
    /* loop over current LineVec's lines */
    for ( short lineIDInSameLine = 0; lineIDInSameLine < sameLineSize; lineIDInSameLine++ )
    {
      /* get a line in current LineVec and its original ID in its octave */
      pSingleLine = & ( keyLines[lineIDInScaleVec][lineIDInSameLine] );
1064
      octaveCount = (short) pSingleLine->octaveCount;
biagio montesano's avatar
biagio montesano committed
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
      if( useDetectionData )
      {
        /* retrieve associated dxImg and dyImg */
        pdxImg = edLineVec_[octaveCount]->dxImg_.ptr<short>();
        pdyImg = edLineVec_[octaveCount]->dyImg_.ptr<short>();

        /* get image size to work on from real one */
        realWidth = (short) edLineVec_[octaveCount]->imageWidth;
        imageWidth = realWidth - 1;
        imageHeight = (short) ( edLineVec_[octaveCount]->imageHeight - 1 );
      }
biagio montesano's avatar
biagio montesano committed
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
      else
      {
        /* retrieve associated dxImg and dyImg */
        pdxImg = dxImg_vector[octaveCount].ptr<short>();
        pdyImg = dyImg_vector[octaveCount].ptr<short>();

        /* get image size to work on from real one */
        realWidth = (short) images_sizes[octaveCount].width;
        imageWidth = realWidth - 1;
        imageHeight = (short) ( images_sizes[octaveCount].height - 1 );
      }
biagio montesano's avatar
biagio montesano committed
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

      /* initialize memory areas */
      memset( pgdLBandSum, 0, numOfBitsBand );
      memset( ngdLBandSum, 0, numOfBitsBand );
      memset( pgdL2BandSum, 0, numOfBitsBand );
      memset( ngdL2BandSum, 0, numOfBitsBand );
      memset( pgdOBandSum, 0, numOfBitsBand );
      memset( ngdOBandSum, 0, numOfBitsBand );
      memset( pgdO2BandSum, 0, numOfBitsBand );
      memset( ngdO2BandSum, 0, numOfBitsBand );

      /* get length of line and its half */
1101
      lengthOfLSP = (short) keyLines[lineIDInScaleVec][lineIDInSameLine].numOfPixels;
biagio montesano's avatar
biagio montesano committed
1102 1103 1104
      halfWidth = ( lengthOfLSP - 1 ) / 2;

      /* get middlepoint of line */
1105 1106
      lineMiddlePointX = (float) ( 0.5 * ( pSingleLine->sPointInOctaveX + pSingleLine->ePointInOctaveX ) );
      lineMiddlePointY = (float) ( 0.5 * ( pSingleLine->sPointInOctaveY + pSingleLine->ePointInOctaveY ) );
biagio montesano's avatar
biagio montesano committed
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

      /*1.rotate the local coordinate system to the line direction (direction is the angle
       between positive line direction and positive X axis)
       *2.compute the gradient projection of pixels in line support region*/

      /* get the vector representing original image reference system after rotation to aligh with
       line's direction */
      dL[0] = cos( pSingleLine->direction );
      dL[1] = sin( pSingleLine->direction );

      /* set the clockwise orthogonal vector of line direction */
      dO[0] = -dL[1];
      dO[1] = dL[0];

      /* get rotated reference frame */
      sCorX0 = -dL[0] * halfWidth + dL[1] * halfHeight + lineMiddlePointX;  //hID =0; wID = 0;
      sCorY0 = -dL[1] * halfWidth - dL[0] * halfHeight + lineMiddlePointY;

      /* BIAS::Matrix<float> gDLMat(heightOfLSP,lengthOfLSP) */
      for ( short hID = 0; hID < heightOfLSP; hID++ )
      {
        /*initialization */
        sCorX = sCorX0;
        sCorY = sCorY0;

        pgdLRowSum = 0;
        ngdLRowSum = 0;
        pgdORowSum = 0;
        ngdORowSum = 0;

        for ( short wID = 0; wID < lengthOfLSP; wID++ )
        {
1139
          tempCor = (short) round( sCorX );
biagio montesano's avatar
biagio montesano committed
1140
          xCor = ( tempCor < 0 ) ? 0 : ( tempCor > imageWidth ) ? imageWidth : tempCor;
1141
          tempCor = (short) round( sCorY );
biagio montesano's avatar
biagio montesano committed
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
          yCor = ( tempCor < 0 ) ? 0 : ( tempCor > imageHeight ) ? imageHeight : tempCor;

          /* To achieve rotation invariance, each simple gradient is rotated aligned with
           * the line direction and clockwise orthogonal direction.*/
          dx = pdxImg[yCor * realWidth + xCor];
          dy = pdyImg[yCor * realWidth + xCor];
          gDL = dx * dL[0] + dy * dL[1];
          gDO = dx * dO[0] + dy * dO[1];
          if( gDL > 0 )
          {
            pgdLRowSum += gDL;
          }
          else
          {
            ngdLRowSum -= gDL;
          }
          if( gDO > 0 )
          {
            pgdORowSum += gDO;
          }
          else
          {
            ngdORowSum -= gDO;
          }
          sCorX += dL[0];
          sCorY += dL[1];
          /* gDLMat[hID][wID] = gDL; */
        }
        sCorX0 -= dL[1];
        sCorY0 += dL[0];
1172
        coefInGaussion = (float) gaussCoefG_[hID];
biagio montesano's avatar
biagio montesano committed
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        pgdLRowSum = coefInGaussion * pgdLRowSum;
        ngdLRowSum = coefInGaussion * ngdLRowSum;
        pgdL2RowSum = pgdLRowSum * pgdLRowSum;
        ngdL2RowSum = ngdLRowSum * ngdLRowSum;
        pgdORowSum = coefInGaussion * pgdORowSum;
        ngdORowSum = coefInGaussion * ngdORowSum;
        pgdO2RowSum = pgdORowSum * pgdORowSum;
        ngdO2RowSum = ngdORowSum * ngdORowSum;

        /* compute {g_dL |g_dL>0 }, {g_dL |g_dL<0 },
         {g_dO |g_dO>0 }, {g_dO |g_dO<0 } of each band in the line support region
1184
         first, current row belong to current band */
1185 1186
        bandID = (short) ( hID / params.widthOfBand_ );
        coefInGaussion = (float) ( gaussCoefL_[hID % params.widthOfBand_ + params.widthOfBand_] );
biagio montesano's avatar
biagio montesano committed
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        pgdLBandSum[bandID] += coefInGaussion * pgdLRowSum;
        ngdLBandSum[bandID] += coefInGaussion * ngdLRowSum;
        pgdL2BandSum[bandID] += coefInGaussion * coefInGaussion * pgdL2RowSum;
        ngdL2BandSum[bandID] += coefInGaussion * coefInGaussion * ngdL2RowSum;
        pgdOBandSum[bandID] += coefInGaussion * pgdORowSum;
        ngdOBandSum[bandID] += coefInGaussion * ngdORowSum;
        pgdO2BandSum[bandID] += coefInGaussion * coefInGaussion * pgdO2RowSum;
        ngdO2BandSum[bandID] += coefInGaussion * coefInGaussion * ngdO2RowSum;

        /* In order to reduce boundary effect along the line gradient direction,
         * a row's gradient will contribute not only to its current band, but also
         * to its nearest upper and down band with gaussCoefL_.*/
        bandID--;
        if( bandID >= 0 )
        {/* the band above the current band */
1202
          coefInGaussion = (float) ( gaussCoefL_[hID % params.widthOfBand_ + 2 * params.widthOfBand_] );
biagio montesano's avatar
biagio montesano committed
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
          pgdLBandSum[bandID] += coefInGaussion * pgdLRowSum;
          ngdLBandSum[bandID] += coefInGaussion * ngdLRowSum;
          pgdL2BandSum[bandID] += coefInGaussion * coefInGaussion * pgdL2RowSum;
          ngdL2BandSum[bandID] += coefInGaussion * coefInGaussion * ngdL2RowSum;
          pgdOBandSum[bandID] += coefInGaussion * pgdORowSum;
          ngdOBandSum[bandID] += coefInGaussion * ngdORowSum;
          pgdO2BandSum[bandID] += coefInGaussion * coefInGaussion * pgdO2RowSum;
          ngdO2BandSum[bandID] += coefInGaussion * coefInGaussion * ngdO2RowSum;
        }
        bandID = bandID + 2;
        if( bandID < NUM_OF_BANDS )
        {/*the band below the current band */
1215
          coefInGaussion = (float) ( gaussCoefL_[hID % params.widthOfBand_] );
biagio montesano's avatar
biagio montesano committed
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
          pgdLBandSum[bandID] += coefInGaussion * pgdLRowSum;
          ngdLBandSum[bandID] += coefInGaussion * ngdLRowSum;
          pgdL2BandSum[bandID] += coefInGaussion * coefInGaussion * pgdL2RowSum;
          ngdL2BandSum[bandID] += coefInGaussion * coefInGaussion * ngdL2RowSum;
          pgdOBandSum[bandID] += coefInGaussion * pgdORowSum;
          ngdOBandSum[bandID] += coefInGaussion * ngdORowSum;
          pgdO2BandSum[bandID] += coefInGaussion * coefInGaussion * pgdO2RowSum;
          ngdO2BandSum[bandID] += coefInGaussion * coefInGaussion * ngdO2RowSum;
        }
      }
      /* gDLMat.Save("gDLMat.txt");
       return 0; */

      /* construct line descriptor */
1230
      pSingleLine->descriptor.resize( descriptor_size );
biagio montesano's avatar
biagio montesano committed
1231 1232 1233 1234 1235 1236
      desVec = pSingleLine->descriptor.data();

      short desID;

      /*Note that the first and last bands only have (lengthOfLSP * widthOfBand_ * 2.0) pixels
       * which are counted. */
1237 1238
      float invN2 = (float) ( 1.0 / ( params.widthOfBand_ * 2.0 ) );
      float invN3 = (float) ( 1.0 / ( params.widthOfBand_ * 3.0 ) );
biagio montesano's avatar
biagio montesano committed
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
      float invN, temp;
      for ( bandID = 0; bandID < NUM_OF_BANDS; bandID++ )
      {
        if( bandID == 0 || bandID == NUM_OF_BANDS - 1 )
        {
          invN = invN2;
        }
        else
        {
          invN = invN3;
        }
        desID = bandID * 8;
        temp = pgdLBandSum[bandID] * invN;
        desVec[desID] = temp;/* mean value of pgdL; */
        desVec[desID + 4] = sqrt( pgdL2BandSum[bandID] * invN - temp * temp );  //std value of pgdL;
        temp = ngdLBandSum[bandID] * invN;
        desVec[desID + 1] = temp;  //mean value of ngdL;
        desVec[desID + 5] = sqrt( ngdL2BandSum[bandID] * invN - temp * temp );  //std value of ngdL;

        temp = pgdOBandSum[bandID] * invN;
        desVec[desID + 2] = temp;  //mean value of pgdO;
        desVec[desID + 6] = sqrt( pgdO2BandSum[bandID] * invN - temp * temp );  //std value of pgdO;
        temp = ngdOBandSum[bandID] * invN;
        desVec[desID + 3] = temp;  //mean value of ngdO;
        desVec[desID + 7] = sqrt( ngdO2BandSum[bandID] * invN - temp * temp );  //std value of ngdO;
      }

      // normalize;
      float tempM, tempS;
      tempM = 0;
      tempS = 0;
      desVec = pSingleLine->descriptor.data();

      int base = 0;
1273
      for ( short i = 0; i < (short) ( NUM_OF_BANDS * 8 ); ++base, i = (short) ( base * 8 ) )
biagio montesano's avatar
biagio montesano committed
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
      {
        tempM += * ( desVec + i ) * * ( desVec + i );  //desVec[8*i+0] * desVec[8*i+0];
        tempM += * ( desVec + i + 1 ) * * ( desVec + i + 1 );  //desVec[8*i+1] * desVec[8*i+1];
        tempM += * ( desVec + i + 2 ) * * ( desVec + i + 2 );  //desVec[8*i+2] * desVec[8*i+2];
        tempM += * ( desVec + i + 3 ) * * ( desVec + i + 3 );  //desVec[8*i+3] * desVec[8*i+3];
        tempS += * ( desVec + i + 4 ) * * ( desVec + i + 4 );  //desVec[8*i+4] * desVec[8*i+4];
        tempS += * ( desVec + i + 5 ) * * ( desVec + i + 5 );  //desVec[8*i+5] * desVec[8*i+5];
        tempS += * ( desVec + i + 6 ) * * ( desVec + i + 6 );  //desVec[8*i+6] * desVec[8*i+6];
        tempS += * ( desVec + i + 7 ) * * ( desVec + i + 7 );  //desVec[8*i+7] * desVec[8*i+7];
      }

      tempM = 1 / sqrt( tempM );
      tempS = 1 / sqrt( tempS );
      desVec = pSingleLine->descriptor.data();
      base = 0;
1289
      for ( short i = 0; i < (short) ( NUM_OF_BANDS * 8 ); ++base, i = (short) ( base * 8 ) )
biagio montesano's avatar
biagio montesano committed
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
      {
        * ( desVec + i ) = * ( desVec + i ) * tempM;  //desVec[8*i] =  desVec[8*i] * tempM;
        * ( desVec + 1 + i ) = * ( desVec + 1 + i ) * tempM;  //desVec[8*i+1] =  desVec[8*i+1] * tempM;
        * ( desVec + 2 + i ) = * ( desVec + 2 + i ) * tempM;  //desVec[8*i+2] =  desVec[8*i+2] * tempM;
        * ( desVec + 3 + i ) = * ( desVec + 3 + i ) * tempM;  //desVec[8*i+3] =  desVec[8*i+3] * tempM;
        * ( desVec + 4 + i ) = * ( desVec + 4 + i ) * tempS;  //desVec[8*i+4] =  desVec[8*i+4] * tempS;
        * ( desVec + 5 + i ) = * ( desVec + 5 + i ) * tempS;  //desVec[8*i+5] =  desVec[8*i+5] * tempS;
        * ( desVec + 6 + i ) = * ( desVec + 6 + i ) * tempS;  //desVec[8*i+6] =  desVec[8*i+6] * tempS;
        * ( desVec + 7 + i ) = * ( desVec + 7 + i ) * tempS;  //desVec[8*i+7] =  desVec[8*i+7] * tempS;
      }

      /* In order to reduce the influence of non-linear illumination,
       * a threshold is used to limit the value of element in the unit feature
       * vector no larger than this threshold. In Z.Wang's work, a value of 0.4 is found
       * empirically to be a proper threshold.*/
      desVec = pSingleLine->descriptor.data();
1306
      for ( short i = 0; i < descriptor_size; i++ )
biagio montesano's avatar
biagio montesano committed
1307 1308 1309
      {
        if( desVec[i] > 0.4 )
        {
1310
          desVec[i] = (float) 0.4;
biagio montesano's avatar
biagio montesano committed
1311 1312 1313 1314 1315
        }
      }

      //re-normalize desVec;
      temp = 0;
1316
      for ( short i = 0; i < descriptor_size; i++ )
biagio montesano's avatar
biagio montesano committed
1317 1318 1319 1320 1321
      {
        temp += desVec[i] * desVec[i];
      }

      temp = 1 / sqrt( temp );
1322
      for ( short i = 0; i < descriptor_size; i++ )
biagio montesano's avatar
biagio montesano committed
1323 1324 1325 1326 1327 1328
      {
        desVec[i] = desVec[i] * temp;
      }
    }/* end for(short lineIDInSameLine = 0; lineIDInSameLine<sameLineSize;
     lineIDInSameLine++) */

1329 1330 1331 1332 1333
    cv::Mat appoggio = cv::Mat( 1, 32, CV_32FC1 );
    float* pointerToRow = appoggio.ptr<float>( 0 );
    for ( int g = 0; g < 32; g++ )
    {
      /* get LBD data */
1334 1335
      float* des_Vec = keyLines[lineIDInScaleVec][0].descriptor.data();
      *pointerToRow = des_Vec[g];
1336 1337 1338 1339
      pointerToRow++;

    }

biagio montesano's avatar
biagio montesano committed
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
  }/* end for(short lineIDInScaleVec = 0;
   lineIDInScaleVec<numOfFinalLine; lineIDInScaleVec++) */

  delete[] dL;
  delete[] dO;
  delete[] pgdLBandSum;
  delete[] ngdLBandSum;
  delete[] pgdL2BandSum;
  delete[] ngdL2BandSum;
  delete[] pgdOBandSum;
  delete[] ngdOBandSum;
  delete[] pgdO2BandSum;
  delete[] ngdO2BandSum;

1354 1355 1356
  return 1;

}
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

BinaryDescriptor::EDLineDetector::EDLineDetector()
{
  //set parameters for line segment detection
  ksize_ = 15;  //15
  sigma_ = 30.0;  //30
  gradienThreshold_ = 80;  // ***** ORIGINAL WAS 25
  anchorThreshold_ = 8;  //8
  scanIntervals_ = 2;  //2
  minLineLen_ = 15;  //15
  lineFitErrThreshold_ = 1.6;  //1.4
  InitEDLine_();
}
BinaryDescriptor::EDLineDetector::EDLineDetector( EDLineParam param )
{
  //set parameters for line segment detection
  ksize_ = param.ksize;
  sigma_ = param.sigma;
  gradienThreshold_ = (short) param.gradientThreshold;
  anchorThreshold_ = (unsigned char) param.anchorThreshold;
  scanIntervals_ = param.scanIntervals;
  minLineLen_ = param.minLineLen;
  lineFitErrThreshold_ = param.lineFitErrThreshold;
  InitEDLine_();
}
void BinaryDescriptor::EDLineDetector::InitEDLine_()
{
  bValidate_ = true;
  ATA = cv::Mat_<int>( 2, 2 );
  ATV = cv::Mat_<int>( 1, 2 );
  tempMatLineFit = cv::Mat_<int>( 2, 2 );
  tempVecLineFit = cv::Mat_<int>( 1, 2 );
  fitMatT = cv::Mat_<int>( 2, minLineLen_ );
  fitVec = cv::Mat_<int>( 1, minLineLen_ );
  for ( int i = 0; i < minLineLen_; i++ )
  {
    fitMatT[1][i] = 1;
  }
  dxImg_.create( 1, 1, CV_16SC1 );
  dyImg_.create( 1, 1, CV_16SC1 );
  gImgWO_.create( 1, 1, CV_8SC1 );
  pFirstPartEdgeX_ = NULL;
  pFirstPartEdgeY_ = NULL;
  pFirstPartEdgeS_ = NULL;
  pSecondPartEdgeX_ = NULL;
  pSecondPartEdgeY_ = NULL;
  pSecondPartEdgeS_ = NULL;
  pAnchorX_ = NULL;
  pAnchorY_ = NULL;
}

BinaryDescriptor::EDLineDetector::~EDLineDetector()
{
  if( pFirstPartEdgeX_ != NULL )
  {
    delete[] pFirstPartEdgeX_;
    delete[] pFirstPartEdgeY_;
    delete[] pSecondPartEdgeX_;
    delete[] pSecondPartEdgeY_;
    delete[] pAnchorX_;
    delete[] pAnchorY_;
  }
  if( pFirstPartEdgeS_ != NULL )
  {
    delete[] pFirstPartEdgeS_;
    delete[] pSecondPartEdgeS_;
  }
}

int BinaryDescriptor::EDLineDetector::EdgeDrawing( cv::Mat &image, EdgeChains &edgeChains )
{
  imageWidth = image.cols;
  imageHeight = image.rows;
  unsigned int pixelNum = imageWidth * imageHeight;

  unsigned int edgePixelArraySize = pixelNum / 5;
  unsigned int maxNumOfEdge = edgePixelArraySize / 20;
  //compute dx, dy images
  if( gImg_.cols != (int) imageWidth || gImg_.rows != (int) imageHeight )
  {
    if( pFirstPartEdgeX_ != NULL )
    {
      delete[] pFirstPartEdgeX_;
      delete[] pFirstPartEdgeY_;
      delete[] pSecondPartEdgeX_;
      delete[] pSecondPartEdgeY_;
      delete[] pFirstPartEdgeS_;
      delete[] pSecondPartEdgeS_;
      delete[] pAnchorX_;
      delete[] pAnchorY_;
    }

    dxImg_.create( imageHeight, imageWidth, CV_16SC1 );
    dyImg_.create( imageHeight, imageWidth, CV_16SC1 );
    gImgWO_.create( imageHeight, imageWidth, CV_16SC1 );
    gImg_.create( imageHeight, imageWidth, CV_16SC1 );
    dirImg_.create( imageHeight, imageWidth, CV_8UC1 );
    edgeImage_.create( imageHeight, imageWidth, CV_8UC1 );
    pFirstPartEdgeX_ = new unsigned int[edgePixelArraySize];
    pFirstPartEdgeY_ = new unsigned int[edgePixelArraySize];
    pSecondPartEdgeX_ = new unsigned int[edgePixelArraySize];
    pSecondPartEdgeY_ = new unsigned int[edgePixelArraySize];
    pFirstPartEdgeS_ = new unsigned int[maxNumOfEdge];
    pSecondPartEdgeS_ = new unsigned int[maxNumOfEdge];
    pAnchorX_ = new unsigned int[edgePixelArraySize];
    pAnchorY_ = new unsigned int[edgePixelArraySize];
  }
  cv::Sobel( image, dxImg_, CV_16SC1, 1, 0, 3 );
  cv::Sobel( image, dyImg_, CV_16SC1, 0, 1, 3 );

  //compute gradient and direction images
  cv::Mat dxABS_m = cv::abs( dxImg_ );
  cv::Mat dyABS_m = cv::abs( dyImg_ );
  cv::Mat sumDxDy;
  cv::add( dyABS_m, dxABS_m, sumDxDy );

  cv::threshold( sumDxDy, gImg_, gradienThreshold_ + 1, 255, cv::THRESH_TOZERO );
  gImg_ = gImg_ / 4;
  gImgWO_ = sumDxDy / 4;
  cv::compare( dxABS_m, dyABS_m, dirImg_, cv::CMP_LT );

  short *pgImg = gImg_.ptr<short>();
  unsigned char *pdirImg = dirImg_.ptr();

  //extract the anchors in the gradient image, store into a vector
  memset( pAnchorX_, 0, edgePixelArraySize * sizeof(unsigned int) );  //initialization
  memset( pAnchorY_, 0, edgePixelArraySize * sizeof(unsigned int) );
  unsigned int anchorsSize = 0;
  int indexInArray;
  unsigned char gValue1, gValue2, gValue3;
  for ( unsigned int w = 1; w < imageWidth - 1; w = w + scanIntervals_ )
  {
    for ( unsigned int h = 1; h < imageHeight - 1; h = h + scanIntervals_ )
    {
      indexInArray = h * imageWidth + w;
      //gValue1 = pdirImg[indexInArray];
      if( pdirImg[indexInArray] == Horizontal )
      {  //if the direction of pixel is horizontal, then compare with up and down
         //gValue2 = pgImg[indexInArray];
        if( pgImg[indexInArray] >= pgImg[indexInArray - imageWidth] + anchorThreshold_
            && pgImg[indexInArray] >= pgImg[indexInArray + imageWidth] + anchorThreshold_ )
        {       // (w,h) is accepted as an anchor
          pAnchorX_[anchorsSize] = w;
          pAnchorY_[anchorsSize++] = h;
        }
      }
      else
      {       // if(pdirImg[indexInArray]==Vertical){//it is vertical edge, should be compared with left and right
        //gValue2 = pgImg[indexInArray];
        if( pgImg[indexInArray] >= pgImg[indexInArray - 1] + anchorThreshold_ && pgImg[indexInArray] >= pgImg[indexInArray + 1] + anchorThreshold_ )
        {       // (w,h) is accepted as an anchor
          pAnchorX_[anchorsSize] = w;
          pAnchorY_[anchorsSize++] = h;
        }
      }
    }
  }
  if( anchorsSize > edgePixelArraySize )
  {
    std::cout << "anchor size is larger than its maximal size. anchorsSize=" << anchorsSize << ", maximal size = " << edgePixelArraySize << std::endl;
    return -1;
  }

  //link the anchors by smart routing
  edgeImage_.setTo( 0 );
  unsigned char *pEdgeImg = edgeImage_.data;
  memset( pFirstPartEdgeX_, 0, edgePixelArraySize * sizeof(unsigned int) );       //initialization
  memset( pFirstPartEdgeY_, 0, edgePixelArraySize * sizeof(unsigned int) );
  memset( pSecondPartEdgeX_, 0, edgePixelArraySize * sizeof(unsigned int) );
  memset( pSecondPartEdgeY_, 0, edgePixelArraySize * sizeof(unsigned int) );
  memset( pFirstPartEdgeS_, 0, maxNumOfEdge * sizeof(unsigned int) );
  memset( pSecondPartEdgeS_, 0, maxNumOfEdge * sizeof(unsigned int) );
  unsigned int offsetPFirst = 0, offsetPSecond = 0;
  unsigned int offsetPS = 0;

  unsigned int x, y;
  unsigned int lastX = 0;
  unsigned int lastY = 0;
  unsigned char lastDirection;        //up = 1, right = 2, down = 3, left = 4;
  unsigned char shouldGoDirection;        //up = 1, right = 2, down = 3, left = 4;
  int edgeLenFirst, edgeLenSecond;
  for ( unsigned int i = 0; i < anchorsSize; i++ )
  {
    x = pAnchorX_[i];
    y = pAnchorY_[i];
    indexInArray = y * imageWidth + x;
    if( pEdgeImg[indexInArray] )
    {       //if anchor i is already been an edge pixel.
      continue;
    }
    /*The walk stops under 3 conditions:
     * 1. We move out of the edge areas, i.e., the thresholded gradient value
     *    of the current pixel is 0.
     * 2. The current direction of the edge changes, i.e., from horizontal
     *    to vertical or vice versa.?? (This is turned out not correct. From the online edge draw demo
     *    we can figure out that authors don't implement this rule either because their extracted edge
     *    chain could be a circle which means pixel directions would definitely be different
     *    in somewhere on the chain.)
     * 3. We encounter a previously detected edge pixel. */
    pFirstPartEdgeS_[offsetPS] = offsetPFirst;
    if( pdirImg[indexInArray] == Horizontal )
    {       //if the direction of this pixel is horizontal, then go left and right.
      //fist go right, pixel direction may be different during linking.
      lastDirection = RightDir;
      while ( pgImg[indexInArray] > 0 && !pEdgeImg[indexInArray] )
      {
        pEdgeImg[indexInArray] = 1;        // Mark this pixel as an edge pixel
        pFirstPartEdgeX_[offsetPFirst] = x;
        pFirstPartEdgeY_[offsetPFirst++] = y;
        shouldGoDirection = 0;        //unknown
        if( pdirImg[indexInArray] == Horizontal )
        {        //should go left or right
          if( lastDirection == UpDir || lastDirection == DownDir )
          {        //change the pixel direction now
            if( x > lastX )
            {        //should go right
              shouldGoDirection = RightDir;
            }
            else
            {        //should go left
              shouldGoDirection = LeftDir;
            }
          }
          lastX = x;
          lastY = y;
          if( lastDirection == RightDir || shouldGoDirection == RightDir )
          {        //go right
            if( x == imageWidth - 1 || y == 0 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the right and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray + 1];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth + 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-right
              x = x + 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-right
              x = x + 1;
              y = y + 1;
            }
            else
            {        //straight-right
              x = x + 1;
            }
            lastDirection = RightDir;
          }
          else if( lastDirection == LeftDir || shouldGoDirection == LeftDir )
          {        //go left
            if( x == 0 || y == 0 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the left and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth - 1];
            gValue2 = (unsigned char) pgImg[indexInArray - 1];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-left
              x = x - 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-left
              x = x - 1;
              y = y + 1;
            }
            else
            {        //straight-left
              x = x - 1;
            }
            lastDirection = LeftDir;
          }
        }
        else
        {        //should go up or down.
          if( lastDirection == RightDir || lastDirection == LeftDir )
          {        //change the pixel direction now
            if( y > lastY )
            {        //should go down
              shouldGoDirection = DownDir;
            }
            else
            {        //should go up
              shouldGoDirection = UpDir;
            }
          }
          lastX = x;
          lastY = y;
          if( lastDirection == DownDir || shouldGoDirection == DownDir )
          {        //go down
            if( x == 0 || x == imageWidth - 1 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the down and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray + imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray + imageWidth];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //down-right
              x = x + 1;
              y = y + 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-left
              x = x - 1;
              y = y + 1;
            }
            else
            {        //straight-down
              y = y + 1;
            }
            lastDirection = DownDir;
          }
          else if( lastDirection == UpDir || shouldGoDirection == UpDir )
          {        //go up
            if( x == 0 || x == imageWidth - 1 || y == 0 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the up and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray - imageWidth];
            gValue3 = (unsigned char) pgImg[indexInArray - imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-right
              x = x + 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //up-left
              x = x - 1;
              y = y - 1;
            }
            else
            {        //straight-up
              y = y - 1;
            }
            lastDirection = UpDir;
          }
        }
        indexInArray = y * imageWidth + x;
      }        //end while go right
               //then go left, pixel direction may be different during linking.
      x = pAnchorX_[i];
      y = pAnchorY_[i];
      indexInArray = y * imageWidth + x;
      pEdgeImg[indexInArray] = 0;     //mark the anchor point be a non-edge pixel and
      lastDirection = LeftDir;
      pSecondPartEdgeS_[offsetPS] = offsetPSecond;
      while ( pgImg[indexInArray] > 0 && !pEdgeImg[indexInArray] )
      {
        pEdgeImg[indexInArray] = 1;        // Mark this pixel as an edge pixel
        pSecondPartEdgeX_[offsetPSecond] = x;
        pSecondPartEdgeY_[offsetPSecond++] = y;
        shouldGoDirection = 0;        //unknown
        if( pdirImg[indexInArray] == Horizontal )
        {        //should go left or right
          if( lastDirection == UpDir || lastDirection == DownDir )
          {        //change the pixel direction now
            if( x > lastX )
            {        //should go right
              shouldGoDirection = RightDir;
            }
            else
            {        //should go left
              shouldGoDirection = LeftDir;
            }
          }
          lastX = x;
          lastY = y;
          if( lastDirection == RightDir || shouldGoDirection == RightDir )
          {        //go right
            if( x == imageWidth - 1 || y == 0 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the right and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray + 1];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth + 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-right
              x = x + 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-right
              x = x + 1;
              y = y + 1;
            }
            else
            {        //straight-right
              x = x + 1;
            }
            lastDirection = RightDir;
          }
          else if( lastDirection == LeftDir || shouldGoDirection == LeftDir )
          {        //go left
            if( x == 0 || y == 0 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the left and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth - 1];
            gValue2 = (unsigned char) pgImg[indexInArray - 1];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-left
              x = x - 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-left
              x = x - 1;
              y = y + 1;
            }
            else
            {        //straight-left
              x = x - 1;
            }
            lastDirection = LeftDir;
          }
        }
        else
        {        //should go up or down.
          if( lastDirection == RightDir || lastDirection == LeftDir )
          {        //change the pixel direction now
            if( y > lastY )
            {        //should go down
              shouldGoDirection = DownDir;
            }
            else
            {        //should go up
              shouldGoDirection = UpDir;
            }
          }
          lastX = x;
          lastY = y;
          if( lastDirection == DownDir || shouldGoDirection == DownDir )
          {        //go down
            if( x == 0 || x == imageWidth - 1 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the down and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray + imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray + imageWidth];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //down-right
              x = x + 1;
              y = y + 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-left
              x = x - 1;
              y = y + 1;
            }
            else
            {        //straight-down
              y = y + 1;
            }
            lastDirection = DownDir;
          }
          else if( lastDirection == UpDir || shouldGoDirection == UpDir )
          {        //go up
            if( x == 0 || x == imageWidth - 1 || y == 0 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the up and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray - imageWidth];
            gValue3 = (unsigned char) pgImg[indexInArray - imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-right
              x = x + 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //up-left
              x = x - 1;
              y = y - 1;
            }
            else
            {        //straight-up
              y = y - 1;
            }
            lastDirection = UpDir;
          }
        }
        indexInArray = y * imageWidth + x;
      }        //end while go left
               //end anchor is Horizontal
    }
    else
    {     //the direction of this pixel is vertical, go up and down
      //fist go down, pixel direction may be different during linking.
      lastDirection = DownDir;
      while ( pgImg[indexInArray] > 0 && !pEdgeImg[indexInArray] )
      {
        pEdgeImg[indexInArray] = 1;        // Mark this pixel as an edge pixel
        pFirstPartEdgeX_[offsetPFirst] = x;
        pFirstPartEdgeY_[offsetPFirst++] = y;
        shouldGoDirection = 0;        //unknown
        if( pdirImg[indexInArray] == Horizontal )
        {        //should go left or right
          if( lastDirection == UpDir || lastDirection == DownDir )
          {        //change the pixel direction now
            if( x > lastX )
            {        //should go right
              shouldGoDirection = RightDir;
            }
            else
            {        //should go left
              shouldGoDirection = LeftDir;
            }
          }
          lastX = x;
          lastY = y;
          if( lastDirection == RightDir || shouldGoDirection == RightDir )
          {        //go right
            if( x == imageWidth - 1 || y == 0 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the right and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray + 1];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth + 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-right
              x = x + 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-right
              x = x + 1;
              y = y + 1;
            }
            else
            {        //straight-right
              x = x + 1;
            }
            lastDirection = RightDir;
          }
          else if( lastDirection == LeftDir || shouldGoDirection == LeftDir )
          {        //go left
            if( x == 0 || y == 0 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the left and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth - 1];
            gValue2 = (unsigned char) pgImg[indexInArray - 1];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-left
              x = x - 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-left
              x = x - 1;
              y = y + 1;
            }
            else
            {        //straight-left
              x = x - 1;
            }
            lastDirection = LeftDir;
          }
        }
        else
        {        //should go up or down.
          if( lastDirection == RightDir || lastDirection == LeftDir )
          {        //change the pixel direction now
            if( y > lastY )
            {        //should go down
              shouldGoDirection = DownDir;
            }
            else
            {        //should go up
              shouldGoDirection = UpDir;
            }
          }
          lastX = x;
          lastY = y;
          if( lastDirection == DownDir || shouldGoDirection == DownDir )
          {        //go down
            if( x == 0 || x == imageWidth - 1 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the down and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray + imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray + imageWidth];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //down-right
              x = x + 1;
              y = y + 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-left
              x = x - 1;
              y = y + 1;
            }
            else
            {        //straight-down
              y = y + 1;
            }
            lastDirection = DownDir;
          }
          else if( lastDirection == UpDir || shouldGoDirection == UpDir )
          {        //go up
            if( x == 0 || x == imageWidth - 1 || y == 0 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the up and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray - imageWidth];
            gValue3 = (unsigned char) pgImg[indexInArray - imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-right
              x = x + 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //up-left
              x = x - 1;
              y = y - 1;
            }
            else
            {        //straight-up
              y = y - 1;
            }
            lastDirection = UpDir;
          }
        }
        indexInArray = y * imageWidth + x;
      }        //end while go down
               //then go up, pixel direction may be different during linking.
      lastDirection = UpDir;
      x = pAnchorX_[i];
      y = pAnchorY_[i];
      indexInArray = y * imageWidth + x;
      pEdgeImg[indexInArray] = 0;     //mark the anchor point be a non-edge pixel and
      pSecondPartEdgeS_[offsetPS] = offsetPSecond;
      while ( pgImg[indexInArray] > 0 && !pEdgeImg[indexInArray] )
      {
        pEdgeImg[indexInArray] = 1;        // Mark this pixel as an edge pixel
        pSecondPartEdgeX_[offsetPSecond] = x;
        pSecondPartEdgeY_[offsetPSecond++] = y;
        shouldGoDirection = 0;        //unknown
        if( pdirImg[indexInArray] == Horizontal )
        {        //should go left or right
          if( lastDirection == UpDir || lastDirection == DownDir )
          {        //change the pixel direction now
            if( x > lastX )
            {        //should go right
              shouldGoDirection = RightDir;
            }
            else
            {        //should go left
              shouldGoDirection = LeftDir;
            }
          }
          lastX = x;
          lastY = y;
          if( lastDirection == RightDir || shouldGoDirection == RightDir )
          {        //go right
            if( x == imageWidth - 1 || y == 0 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the right and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray + 1];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth + 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-right
              x = x + 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-right
              x = x + 1;
              y = y + 1;
            }
            else
            {        //straight-right
              x = x + 1;
            }
            lastDirection = RightDir;
          }
          else if( lastDirection == LeftDir || shouldGoDirection == LeftDir )
          {        //go left
            if( x == 0 || y == 0 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the left and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth - 1];
            gValue2 = (unsigned char) pgImg[indexInArray - 1];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-left
              x = x - 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-left
              x = x - 1;
              y = y + 1;
            }
            else
            {        //straight-left
              x = x - 1;
            }
            lastDirection = LeftDir;
          }
        }
        else
        {        //should go up or down.
          if( lastDirection == RightDir || lastDirection == LeftDir )
          {        //change the pixel direction now
            if( y > lastY )
            {        //should go down
              shouldGoDirection = DownDir;
            }
            else
            {        //should go up
              shouldGoDirection = UpDir;
            }
          }
          lastX = x;
          lastY = y;
          if( lastDirection == DownDir || shouldGoDirection == DownDir )
          {        //go down
            if( x == 0 || x == imageWidth - 1 || y == imageHeight - 1 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the down and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray + imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray + imageWidth];
            gValue3 = (unsigned char) pgImg[indexInArray + imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //down-right
              x = x + 1;
              y = y + 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //down-left
              x = x - 1;
              y = y + 1;
            }
            else
            {        //straight-down
              y = y + 1;
            }
            lastDirection = DownDir;
          }
          else if( lastDirection == UpDir || shouldGoDirection == UpDir )
          {        //go up
            if( x == 0 || x == imageWidth - 1 || y == 0 )
            {        //reach the image border
              break;
            }
            // Look at 3 neighbors to the up and pick the one with the max. gradient value
            gValue1 = (unsigned char) pgImg[indexInArray - imageWidth + 1];
            gValue2 = (unsigned char) pgImg[indexInArray - imageWidth];
            gValue3 = (unsigned char) pgImg[indexInArray - imageWidth - 1];
            if( gValue1 >= gValue2 && gValue1 >= gValue3 )
            {        //up-right
              x = x + 1;
              y = y - 1;
            }
            else if( gValue3 >= gValue2 && gValue3 >= gValue1 )
            {        //up-left
              x = x - 1;
              y = y - 1;
            }
            else
            {        //straight-up
              y = y - 1;
            }
            lastDirection = UpDir;
          }
        }
        indexInArray = y * imageWidth + x;
      }        //end while go up
    }        //end anchor is Vertical
             //only keep the edge chains whose length is larger than the minLineLen_;
    edgeLenFirst = offsetPFirst - pFirstPartEdgeS_[offsetPS];
    edgeLenSecond = offsetPSecond - pSecondPartEdgeS_[offsetPS];
    if( edgeLenFirst + edgeLenSecond < minLineLen_ + 1 )
    {   //short edge, drop it
      offsetPFirst = pFirstPartEdgeS_[offsetPS];
      offsetPSecond = pSecondPartEdgeS_[offsetPS];
    }
    else
    {
      offsetPS++;
    }
  }
  //store the last index
  pFirstPartEdgeS_[offsetPS] = offsetPFirst;
  pSecondPartEdgeS_[offsetPS] = offsetPSecond;
  if( offsetPS > maxNumOfEdge )
  {
    std::cout << "Edge drawing Error: The total number of edges is larger than MaxNumOfEdge, "
        "numofedge = " << offsetPS << ", MaxNumOfEdge=" << maxNumOfEdge << std::endl;
    return -1;
  }
  if( offsetPFirst > edgePixelArraySize || offsetPSecond > edgePixelArraySize )
  {
    std::cout << "Edge drawing Error: The total number of edge pixels is larger than MaxNumOfEdgePixels, "
        "numofedgePixel1 = " << offsetPFirst << ",  numofedgePixel2 = " << offsetPSecond << ", MaxNumOfEdgePixel=" << edgePixelArraySize << std::endl;
    return -1;
  }

  /*now all the edge information are stored in pFirstPartEdgeX_, pFirstPartEdgeY_,
   *pFirstPartEdgeS_,  pSecondPartEdgeX_, pSecondPartEdgeY_, pSecondPartEdgeS_;
   *we should reorganize them into edgeChains for easily using. */
  int tempID;
  edgeChains.xCors.resize( offsetPFirst + offsetPSecond );
  edgeChains.yCors.resize( offsetPFirst + offsetPSecond );
  edgeChains.sId.resize( offsetPS + 1 );
  unsigned int *pxCors = edgeChains.xCors.data();
  unsigned int *pyCors = edgeChains.yCors.data();
  unsigned int *psId = edgeChains.sId.data();
  offsetPFirst = 0;
  offsetPSecond = 0;
  unsigned int indexInCors = 0;
  unsigned int numOfEdges = 0;
  for ( unsigned int edgeId = 0; edgeId < offsetPS; edgeId++ )
  {
    //step1, put the first and second parts edge coordinates together from edge start to edge end
    psId[numOfEdges++] = indexInCors;
    indexInArray = pFirstPartEdgeS_[edgeId];
    offsetPFirst = pFirstPartEdgeS_[edgeId + 1];
    for ( tempID = offsetPFirst - 1; tempID >= indexInArray; tempID-- )
    {   //add first part edge
      pxCors[indexInCors] = pFirstPartEdgeX_[tempID];
      pyCors[indexInCors++] = pFirstPartEdgeY_[tempID];
    }
    indexInArray = pSecondPartEdgeS_[edgeId];
    offsetPSecond = pSecondPartEdgeS_[edgeId + 1];
    for ( tempID = indexInArray + 1; tempID < (int) offsetPSecond; tempID++ )
    {   //add second part edge
      pxCors[indexInCors] = pSecondPartEdgeX_[tempID];
      pyCors[indexInCors++] = pSecondPartEdgeY_[tempID];
    }
  }
  psId[numOfEdges] = indexInCors;   //the end index of the last edge
  edgeChains.numOfEdges = numOfEdges;

  return 1;
}

int BinaryDescriptor::EDLineDetector::EDline( cv::Mat &image, LineChains &lines )
{

  //first, call EdgeDrawing function to extract edges
  EdgeChains edges;
  if( ( EdgeDrawing( image, edges ) ) != 1 )
  {
    std::cout << "Line Detection not finished" << std::endl;
    return -1;
  }

  //detect lines
  unsigned int linePixelID = edges.sId[edges.numOfEdges];
  lines.xCors.resize( linePixelID );
  lines.yCors.resize( linePixelID );
  lines.sId.resize( 5 * edges.numOfEdges );
  unsigned int *pEdgeXCors = edges.xCors.data();
  unsigned int *pEdgeYCors = edges.yCors.data();
  unsigned int *pEdgeSID = edges.sId.data();
  unsigned int *pLineXCors = lines.xCors.data();
  unsigned int *pLineYCors = lines.yCors.data();
  unsigned int *pLineSID = lines.sId.data();
  logNT_ = 2.0 * ( log10( (double) imageWidth ) + log10( (double) imageHeight ) );
  double lineFitErr = 0;    //the line fit error;
  std::vector<double> lineEquation( 2, 0 );
  lineEquations_.clear();
  lineEndpoints_.clear();
  lineDirection_.clear();
  unsigned char *pdirImg = dirImg_.data;
  unsigned int numOfLines = 0;
  unsigned int newOffsetS = 0;
  unsigned int offsetInEdgeArrayS, offsetInEdgeArrayE;    //start index and end index
  unsigned int offsetInLineArray = 0;
  float direction;    //line direction

  for ( unsigned int edgeID = 0; edgeID < edges.numOfEdges; edgeID++ )
  {
    offsetInEdgeArrayS = pEdgeSID[edgeID];
    offsetInEdgeArrayE = pEdgeSID[edgeID + 1];
    while ( offsetInEdgeArrayE > offsetInEdgeArrayS + minLineLen_ )
    {   //extract line segments from an edge, may find more than one segments
      //find an initial line segment
      while ( offsetInEdgeArrayE > offsetInEdgeArrayS + minLineLen_ )
      {
        lineFitErr = LeastSquaresLineFit_( pEdgeXCors, pEdgeYCors, offsetInEdgeArrayS, lineEquation );
        if( lineFitErr <= lineFitErrThreshold_ )
          break;      //ok, an initial line segment detected
        offsetInEdgeArrayS += SkipEdgePoint;  //skip the first two pixel in the chain and try with the remaining pixels
      }
      if( lineFitErr > lineFitErrThreshold_ )
        break;  //no line is detected
      //An initial line segment is detected. Try to extend this line segment
      pLineSID[numOfLines] = offsetInLineArray;
      double coef1 = 0;     //for a line ax+by+c=0, coef1 = 1/sqrt(a^2+b^2);
      double pointToLineDis;      //for a line ax+by+c=0 and a point(xi, yi), pointToLineDis = coef1*|a*xi+b*yi+c|
      bool bExtended = true;
      bool bFirstTry = true;
      int numOfOutlier;     //to against noise, we accept a few outlier of a line.
      int tryTimes = 0;
      if( pdirImg[pEdgeYCors[offsetInEdgeArrayS] * imageWidth + pEdgeXCors[offsetInEdgeArrayS]] == Horizontal )
      {     //y=ax+b, i.e. ax-y+b=0
        while ( bExtended )
        {
          tryTimes++;
          if( bFirstTry )
          {
            bFirstTry = false;
            for ( int i = 0; i < minLineLen_; i++ )
            {     //First add the initial line segment to the line array
              pLineXCors[offsetInLineArray] = pEdgeXCors[offsetInEdgeArrayS];
              pLineYCors[offsetInLineArray++] = pEdgeYCors[offsetInEdgeArrayS++];
            }
          }
          else
          {     //after each try, line is extended, line equation should be re-estimated
            //adjust the line equation
            lineFitErr = LeastSquaresLineFit_( pLineXCors, pLineYCors, pLineSID[numOfLines], newOffsetS, offsetInLineArray, lineEquation );
          }
          coef1 = 1 / sqrt( lineEquation[0] * lineEquation[0] + 1 );
          numOfOutlier = 0;
          newOffsetS = offsetInLineArray;
          while ( offsetInEdgeArrayE > offsetInEdgeArrayS )
          {
            pointToLineDis = fabs( lineEquation[0] * pEdgeXCors[offsetInEdgeArrayS] - pEdgeYCors[offsetInEdgeArrayS] + lineEquation[1] ) * coef1;
            pLineXCors[offsetInLineArray] = pEdgeXCors[offsetInEdgeArrayS];
            pLineYCors[offsetInLineArray++] = pEdgeYCors[offsetInEdgeArrayS++];
            if( pointToLineDis > lineFitErrThreshold_ )
            {
              numOfOutlier++;
              if( numOfOutlier > 3 )
                break;
            }
            else
            {           //we count number of connective outliers.
              numOfOutlier = 0;
            }
          }
          //pop back the last few outliers from lines and return them to edge chain
          offsetInLineArray -= numOfOutlier;
          offsetInEdgeArrayS -= numOfOutlier;
          if( offsetInLineArray - newOffsetS > 0 && tryTimes < TryTime )
          {           //some new pixels are added to the line
          }
          else
          {
            bExtended = false;            //no new pixels are added.
          }
        }
        //the line equation coefficients,for line w1x+w2y+w3 =0, we normalize it to make w1^2+w2^2 = 1.
        std::vector<double> lineEqu( 3, 0 );
        lineEqu[0] = lineEquation[0] * coef1;
        lineEqu[1] = -1 * coef1;
        lineEqu[2] = lineEquation[1] * coef1;
        if( LineValidation_( pLineXCors, pLineYCors, pLineSID[numOfLines], offsetInLineArray, lineEqu, direction ) )
        {           //check the line
          //store the line equation coefficients
          lineEquations_.push_back( lineEqu );
          /*At last, compute the line endpoints and store them.
           *we project the first and last pixels in the pixelChain onto the best fit line
           *to get the line endpoints.
           *xp= (w2^2*x0-w1*w2*y0-w3*w1)/(w1^2+w2^2)
           *yp= (w1^2*y0-w1*w2*x0-w3*w2)/(w1^2+w2^2)  */
          std::vector<float> lineEndP( 4, 0 );          //line endpoints
          double a1 = lineEqu[1] * lineEqu[1];
          double a2 = lineEqu[0] * lineEqu[0];
          double a3 = lineEqu[0] * lineEqu[1];
          double a4 = lineEqu[2] * lineEqu[0];
          double a5 = lineEqu[2] * lineEqu[1];
          unsigned int Px = pLineXCors[pLineSID[numOfLines]];         //first pixel
          unsigned int Py = pLineYCors[pLineSID[numOfLines]];
          lineEndP[0] = (float) ( a1 * Px - a3 * Py - a4 );         //x
          lineEndP[1] = (float) ( a2 * Py - a3 * Px - a5 );         //y
          Px = pLineXCors[offsetInLineArray - 1];         //last pixel
          Py = pLineYCors[offsetInLineArray - 1];
          lineEndP[2] = (float) ( a1 * Px - a3 * Py - a4 );         //x
          lineEndP[3] = (float) ( a2 * Py - a3 * Px - a5 );         //y
          lineEndpoints_.push_back( lineEndP );
          lineDirection_.push_back( direction );
          numOfLines++;
        }
        else
        {
          offsetInLineArray = pLineSID[numOfLines];         // line was not accepted, the offset is set back
        }
      }
      else
      {         //x=ay+b, i.e. x-ay-b=0
        while ( bExtended )
        {
          tryTimes++;
          if( bFirstTry )
          {
            bFirstTry = false;
            for ( int i = 0; i < minLineLen_; i++ )
            {         //First add the initial line segment to the line array
              pLineXCors[offsetInLineArray] = pEdgeXCors[offsetInEdgeArrayS];
              pLineYCors[offsetInLineArray++] = pEdgeYCors[offsetInEdgeArrayS++];
            }
          }
          else
          {         //after each try, line is extended, line equation should be re-estimated
            //adjust the line equation
            lineFitErr = LeastSquaresLineFit_( pLineXCors, pLineYCors, pLineSID[numOfLines], newOffsetS, offsetInLineArray, lineEquation );
          }
          coef1 = 1 / sqrt( 1 + lineEquation[0] * lineEquation[0] );
          numOfOutlier = 0;
          newOffsetS = offsetInLineArray;
          while ( offsetInEdgeArrayE > offsetInEdgeArrayS )
          {
            pointToLineDis = fabs( pEdgeXCors[offsetInEdgeArrayS] - lineEquation[0] * pEdgeYCors[offsetInEdgeArrayS] - lineEquation[1] ) * coef1;
            pLineXCors[offsetInLineArray] = pEdgeXCors[offsetInEdgeArrayS];
            pLineYCors[offsetInLineArray++] = pEdgeYCors[offsetInEdgeArrayS++];
            if( pointToLineDis > lineFitErrThreshold_ )
            {
              numOfOutlier++;
              if( numOfOutlier > 3 )
                break;
            }
            else
            {           //we count number of connective outliers.
              numOfOutlier = 0;
            }
          }
          //pop back the last few outliers from lines and return them to edge chain
          offsetInLineArray -= numOfOutlier;
          offsetInEdgeArrayS -= numOfOutlier;
          if( offsetInLineArray - newOffsetS > 0 && tryTimes < TryTime )
          {           //some new pixels are added to the line
          }
          else
          {
            bExtended = false;            //no new pixels are added.
          }
        }
        //the line equation coefficients,for line w1x+w2y+w3 =0, we normalize it to make w1^2+w2^2 = 1.
        std::vector<double> lineEqu( 3, 0 );
        lineEqu[0] = 1 * coef1;
        lineEqu[1] = -lineEquation[0] * coef1;
        lineEqu[2] = -lineEquation[1] * coef1;

        if( LineValidation_( pLineXCors, pLineYCors, pLineSID[numOfLines], offsetInLineArray, lineEqu, direction ) )
        {           //check the line
          //store the line equation coefficients
          lineEquations_.push_back( lineEqu );
          /*At last, compute the line endpoints and store them.
           *we project the first and last pixels in the pixelChain onto the best fit line
           *to get the line endpoints.
           *xp= (w2^2*x0-w1*w2*y0-w3*w1)/(w1^2+w2^2)
           *yp= (w1^2*y0-w1*w2*x0-w3*w2)/(w1^2+w2^2)  */
          std::vector<float> lineEndP( 4, 0 );          //line endpoints
          double a1 = lineEqu[1] * lineEqu[1];
          double a2 = lineEqu[0] * lineEqu[0];
          double a3 = lineEqu[0] * lineEqu[1];
          double a4 = lineEqu[2] * lineEqu[0];
          double a5 = lineEqu[2] * lineEqu[1];
          unsigned int Px = pLineXCors[pLineSID[numOfLines]];         //first pixel
          unsigned int Py = pLineYCors[pLineSID[numOfLines]];
          lineEndP[0] = (float) ( a1 * Px - a3 * Py - a4 );         //x
          lineEndP[1] = (float) ( a2 * Py - a3 * Px - a5 );         //y
          Px = pLineXCors[offsetInLineArray - 1];         //last pixel
          Py = pLineYCors[offsetInLineArray - 1];
          lineEndP[2] = (float) ( a1 * Px - a3 * Py - a4 );         //x
          lineEndP[3] = (float) ( a2 * Py - a3 * Px - a5 );         //y
          lineEndpoints_.push_back( lineEndP );
          lineDirection_.push_back( direction );
          numOfLines++;
        }
        else
        {
          offsetInLineArray = pLineSID[numOfLines];         // line was not accepted, the offset is set back
        }
      }
      //Extract line segments from the remaining pixel; Current chain has been shortened already.
    }
  }         //end for(unsigned int edgeID=0; edgeID<edges.numOfEdges; edgeID++)

  pLineSID[numOfLines] = offsetInLineArray;
  lines.numOfLines = numOfLines;

  return 1;
}

double BinaryDescriptor::EDLineDetector::LeastSquaresLineFit_( unsigned int *xCors, unsigned int *yCors, unsigned int offsetS,
                                                               std::vector<double> &lineEquation )
{

  float * pMatT;
  float * pATA;
  double fitError = 0;
  double coef;
  unsigned char *pdirImg = dirImg_.data;
  unsigned int offset = offsetS;
  /*If the first pixel in this chain is horizontal,
   *then we try to find a horizontal line, y=ax+b;*/
  if( pdirImg[yCors[offsetS] * imageWidth + xCors[offsetS]] == Horizontal )
  {
    /*Build the system,and solve it using least square regression: mat * [a,b]^T = vec
     * [x0,1]         [y0]
     * [x1,1] [a]     [y1]
     *    .   [b]  =   .
     * [xn,1]         [yn]*/
    pMatT = fitMatT.ptr<float>();         //fitMatT = [x0, x1, ... xn; 1,1,...,1];
    for ( int i = 0; i < minLineLen_; i++ )
    {
      //*(pMatT+minLineLen_) = 1; //the value are not changed;
      * ( pMatT++ ) = (float) xCors[offsetS];
      fitVec[0][i] = (float) yCors[offsetS++];
    }
    ATA = fitMatT * fitMatT.t();
    ATV = fitMatT * fitVec.t();
    /* [a,b]^T = Inv(mat^T * mat) * mat^T * vec */
    pATA = ATA.ptr<float>();
    coef = 1.0 / ( double( pATA[0] ) * double( pATA[3] ) - double( pATA[1] ) * double( pATA[2] ) );
    //    lineEquation = svd.Invert(ATA) * matT * vec;
    lineEquation[0] = coef * ( double( pATA[3] ) * double( ATV[0][0] ) - double( pATA[1] ) * double( ATV[0][1] ) );
    lineEquation[1] = coef * ( double( pATA[0] ) * double( ATV[0][1] ) - double( pATA[2] ) * double( ATV[0][0] ) );
    /*compute line fit error */
    for ( int i = 0; i < minLineLen_; i++ )
    {
      //coef = double(yCors[offset]) - double(xCors[offset++]) * lineEquation[0] - lineEquation[1];
      coef = double( yCors[offset] ) - double( xCors[offset] ) * lineEquation[0] - lineEquation[1];
      offset++;
      fitError += coef * coef;
    }
    return sqrt( fitError );
  }
  /*If the first pixel in this chain is vertical,
   *then we try to find a vertical line, x=ay+b;*/
  if( pdirImg[yCors[offsetS] * imageWidth + xCors[offsetS]] == Vertical )
  {
    /*Build the system,and solve it using least square regression: mat * [a,b]^T = vec
     * [y0,1]         [x0]
     * [y1,1] [a]     [x1]
     *    .   [b]  =   .
     * [yn,1]         [xn]*/
    pMatT = fitMatT.ptr<float>();         //fitMatT = [y0, y1, ... yn; 1,1,...,1];
    for ( int i = 0; i < minLineLen_; i++ )
    {
      //*(pMatT+minLineLen_) = 1;//the value are not changed;
      * ( pMatT++ ) = (float) yCors[offsetS];
      fitVec[0][i] = (float) xCors[offsetS++];
    }
    ATA = fitMatT * ( fitMatT.t() );
    ATV = fitMatT * fitVec.t();
    /* [a,b]^T = Inv(mat^T * mat) * mat^T * vec */
    pATA = ATA.ptr<float>();
    coef = 1.0 / ( double( pATA[0] ) * double( pATA[3] ) - double( pATA[1] ) * double( pATA[2] ) );
    //    lineEquation = svd.Invert(ATA) * matT * vec;
    lineEquation[0] = coef * ( double( pATA[3] ) * double( ATV[0][0] ) - double( pATA[1] ) * double( ATV[0][1] ) );
    lineEquation[1] = coef * ( double( pATA[0] ) * double( ATV[0][1] ) - double( pATA[2] ) * double( ATV[0][0] ) );
    /*compute line fit error */
    for ( int i = 0; i < minLineLen_; i++ )
    {
      //coef = double(xCors[offset]) - double(yCors[offset++]) * lineEquation[0] - lineEquation[1];
      coef = double( xCors[offset] ) - double( yCors[offset] ) * lineEquation[0] - lineEquation[1];
      offset++;
      fitError += coef * coef;
    }
    return sqrt( fitError );
  }
  return 0;
}
double BinaryDescriptor::EDLineDetector::LeastSquaresLineFit_( unsigned int *xCors, unsigned int *yCors, unsigned int offsetS,
                                                               unsigned int newOffsetS, unsigned int offsetE, std::vector<double> &lineEquation )
{
  int length = offsetE - offsetS;
  int newLength = offsetE - newOffsetS;
  if( length <= 0 || newLength <= 0 )
  {
    std::cout << "EDLineDetector::LeastSquaresLineFit_ Error:"
        " the expected line index is wrong...offsetE = " << offsetE << ", offsetS=" << offsetS << ", newOffsetS=" << newOffsetS << std::endl;
    return -1;
  }
  if( lineEquation.size() != 2 )
  {
    std::cout << "SHOULD NOT BE != 2" << std::endl;
  }
  cv::Mat_<float> matT( 2, newLength );
  cv::Mat_<float> vec( newLength, 1 );
  float * pMatT;
  float * pATA;
  double coef;
  unsigned char *pdirImg = dirImg_.data;
  /*If the first pixel in this chain is horizontal,
   *then we try to find a horizontal line, y=ax+b;*/
  if( pdirImg[yCors[offsetS] * imageWidth + xCors[offsetS]] == Horizontal )
  {
    /*Build the new system,and solve it using least square regression: mat * [a,b]^T = vec
     * [x0',1]         [y0']
     * [x1',1] [a]     [y1']
     *    .    [b]  =   .
     * [xn',1]         [yn']*/
    pMatT = matT.ptr<float>();          //matT = [x0', x1', ... xn'; 1,1,...,1]
    for ( int i = 0; i < newLength; i++ )
    {
      * ( pMatT + newLength ) = 1;
      * ( pMatT++ ) = (float) xCors[newOffsetS];
      vec[0][i] = (float) yCors[newOffsetS++];
    }
    /* [a,b]^T = Inv(ATA + mat^T * mat) * (ATV + mat^T * vec) */
    tempMatLineFit = matT * matT.t();
    tempVecLineFit = matT * vec;
    ATA = ATA + tempMatLineFit;
    ATV = ATV + tempVecLineFit;
    pATA = ATA.ptr<float>();
    coef = 1.0 / ( double( pATA[0] ) * double( pATA[3] ) - double( pATA[1] ) * double( pATA[2] ) );
    lineEquation[0] = coef * ( double( pATA[3] ) * double( ATV[0][0] ) - double( pATA[1] ) * double( ATV[0][1] ) );
    lineEquation[1] = coef * ( double( pATA[0] ) * double( ATV[0][1] ) - double( pATA[2] ) * double( ATV[0][0] ) );

    return 0;
  }
  /*If the first pixel in this chain is vertical,
   *then we try to find a vertical line, x=ay+b;*/
  if( pdirImg[yCors[offsetS] * imageWidth + xCors[offsetS]] == Vertical )
  {
    /*Build the system,and solve it using least square regression: mat * [a,b]^T = vec
     * [y0',1]         [x0']
     * [y1',1] [a]     [x1']
     *    .    [b]  =   .
     * [yn',1]         [xn']*/
    pMatT = matT.ptr<float>();          //matT = [y0', y1', ... yn'; 1,1,...,1]
    for ( int i = 0; i < newLength; i++ )
    {
      * ( pMatT + newLength ) = 1;
      * ( pMatT++ ) = (float) yCors[newOffsetS];
      vec[0][i] = (float) xCors[newOffsetS++];
    }
    /* [a,b]^T = Inv(ATA + mat^T * mat) * (ATV + mat^T * vec) */
//    matT.MultiplyWithTransposeOf(matT, tempMatLineFit);
    tempMatLineFit = matT * matT.t();
    tempVecLineFit = matT * vec;
    ATA = ATA + tempMatLineFit;
    ATV = ATV + tempVecLineFit;
//    pATA = ATA.GetData();
    pATA = ATA.ptr<float>();
    coef = 1.0 / ( double( pATA[0] ) * double( pATA[3] ) - double( pATA[1] ) * double( pATA[2] ) );
    lineEquation[0] = coef * ( double( pATA[3] ) * double( ATV[0][0] ) - double( pATA[1] ) * double( ATV[0][1] ) );
    lineEquation[1] = coef * ( double( pATA[0] ) * double( ATV[0][1] ) - double( pATA[2] ) * double( ATV[0][0] ) );

  }
  return 0;
}

bool BinaryDescriptor::EDLineDetector::LineValidation_( unsigned int *xCors, unsigned int *yCors, unsigned int offsetS, unsigned int offsetE,
                                                        std::vector<double> &lineEquation, float &direction )
{
  if( bValidate_ )
  {
    int n = offsetE - offsetS;
    /*first compute the direction of line, make sure that the dark side always be the
     *left side of a line.*/
    int meanGradientX = 0, meanGradientY = 0;
    short *pdxImg = dxImg_.ptr<short>();
    short *pdyImg = dyImg_.ptr<short>();
    double dx, dy;
    std::vector<double> pointDirection;
    int index;
    for ( int i = 0; i < n; i++ )
    {
      index = yCors[offsetS] * imageWidth + xCors[offsetS];
      offsetS++;
      meanGradientX += pdxImg[index];
      meanGradientY += pdyImg[index];
      dx = (double) pdxImg[index];
      dy = (double) pdyImg[index];
      pointDirection.push_back( atan2( -dx, dy ) );
    }
    dx = fabs( lineEquation[1] );
    dy = fabs( lineEquation[0] );
    if( meanGradientX == 0 && meanGradientY == 0 )
    {         //not possible, if happens, it must be a wrong line,
      return false;
    }
    if( meanGradientX > 0 && meanGradientY >= 0 )
    {         //first quadrant, and positive direction of X axis.
      direction = (float) atan2( -dy, dx );         //line direction is in fourth quadrant
    }
    if( meanGradientX <= 0 && meanGradientY > 0 )
    {         //second quadrant, and positive direction of Y axis.
      direction = (float) atan2( dy, dx );          //line direction is in first quadrant
    }
    if( meanGradientX < 0 && meanGradientY <= 0 )
    {         //third quadrant, and negative direction of X axis.
      direction = (float) atan2( dy, -dx );         //line direction is in second quadrant
    }
    if( meanGradientX >= 0 && meanGradientY < 0 )
    {         //fourth quadrant, and negative direction of Y axis.
      direction = (float) atan2( -dy, -dx );          //line direction is in third quadrant
    }
    /*then check whether the line is on the border of the image. We don't keep the border line.*/
    if( fabs( direction ) < 0.15 || M_PI - fabs( direction ) < 0.15 )
    {         //Horizontal line
      if( fabs( lineEquation[2] ) < 10 || fabs( imageHeight - fabs( lineEquation[2] ) ) < 10 )
      {         //upper border or lower border
        return false;
      }
    }
    if( fabs( fabs( direction ) - M_PI * 0.5 ) < 0.15 )
    {         //Vertical line
      if( fabs( lineEquation[2] ) < 10 || fabs( imageWidth - fabs( lineEquation[2] ) ) < 10 )
      {         //left border or right border
        return false;
      }
    }
    //count the aligned points on the line which have the same direction as the line.
    double disDirection;
    int k = 0;
    for ( int i = 0; i < n; i++ )
    {
      disDirection = fabs( direction - pointDirection[i] );
      if( fabs( 2 * M_PI - disDirection ) < 0.392699 || disDirection < 0.392699 )
      {         //same direction, pi/8 = 0.392699081698724
        k++;
      }
    }
    //now compute NFA(Number of False Alarms)
    double ret = nfa( n, k, 0.125, logNT_ );

    return ( ret > 0 );  //0 corresponds to 1 mean false alarm
  }
  else
  {
    return true;
  }
}

int BinaryDescriptor::EDLineDetector::EDline( cv::Mat &image )
{
  if( ( EDline( image, lines_/*, smoothed*/) ) != 1 )
  {
    return -1;
  }
  lineSalience_.clear();
  lineSalience_.resize( lines_.numOfLines );
  unsigned char *pgImg = gImgWO_.ptr();
  unsigned int indexInLineArray;
  unsigned int *pXCor = lines_.xCors.data();
  unsigned int *pYCor = lines_.yCors.data();
  unsigned int *pSID = lines_.sId.data();
  for ( unsigned int i = 0; i < lineSalience_.size(); i++ )
  {
    int salience = 0;
    for ( indexInLineArray = pSID[i]; indexInLineArray < pSID[i + 1]; indexInLineArray++ )
    {
      salience += pgImg[pYCor[indexInLineArray] * imageWidth + pXCor[indexInLineArray]];
    }
    lineSalience_[i] = (float) salience;
  }
  return 1;
}

2737
}
2738
}