test_layers.cpp 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include <opencv2/core/ocl.hpp>
#include <iostream>
#include "npy_blob.hpp"
46
#include <opencv2/dnn/shape_utils.hpp>
47
#include <opencv2/dnn/all_layers.hpp>
48
#include <opencv2/ts/ocl_test.hpp>
49 50 51 52 53 54 55 56 57 58

namespace cvtest
{

using namespace cv;
using namespace cv::dnn;

template<typename TString>
static String _tf(TString filename)
{
59 60 61 62 63
    String basetestdir = getOpenCVExtraDir();
    size_t len = basetestdir.size();
    if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\')
        return (basetestdir + "/dnn/layers") + filename;
    return (basetestdir + "dnn/layers/") + filename;
64 65
}

66
void runLayer(Ptr<Layer> layer, std::vector<Mat> &inpBlobs, std::vector<Mat> &outBlobs)
67
{
68 69 70
    size_t i, ninputs = inpBlobs.size();
    std::vector<Mat> inp_(ninputs);
    std::vector<Mat*> inp(ninputs);
71 72
    std::vector<Mat> outp, intp;
    std::vector<MatShape> inputs, outputs, internals;
73

74 75 76 77
    for( i = 0; i < ninputs; i++ )
    {
        inp_[i] = inpBlobs[i].clone();
        inp[i] = &inp_[i];
78
        inputs.push_back(shape(inp_[i]));
79
    }
80

81 82 83 84 85 86 87 88 89 90 91 92
    layer->getMemoryShapes(inputs, 0, outputs, internals);
    for(int i = 0; i < outputs.size(); i++)
    {
        outp.push_back(Mat(outputs[i], CV_32F));
    }
    for(int i = 0; i < internals.size(); i++)
    {
        intp.push_back(Mat(internals[i], CV_32F));
    }

    layer->finalize(inp, outp);
    layer->forward(inp, outp, intp);
93

94 95 96 97
    size_t noutputs = outp.size();
    outBlobs.resize(noutputs);
    for( i = 0; i < noutputs; i++ )
        outBlobs[i] = outp[i];
98 99 100
}


101
void testLayerUsingCaffeModels(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true)
102 103 104 105 106 107 108
{
    String prototxt = _tf(basename + ".prototxt");
    String caffemodel = _tf(basename + ".caffemodel");

    String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
    String outfile = _tf(basename + ".npy");

109 110
    cv::setNumThreads(cv::getNumberOfCPUs());

111 112 113 114 115 116 117
    Net net;
    {
        Ptr<Importer> importer = createCaffeImporter(prototxt, (useCaffeModel) ? caffemodel : String());
        ASSERT_TRUE(importer != NULL);
        importer->populateNet(net);
    }

118 119
    Mat inp = blobFromNPY(inpfile);
    Mat ref = blobFromNPY(outfile);
120 121 122

    net.setBlob(".input", inp);
    net.forward();
123
    Mat out = net.getBlob("output");
124 125 126 127 128 129

    normAssert(ref, out);
}

TEST(Layer_Test_Softmax, Accuracy)
{
130
     testLayerUsingCaffeModels("layer_softmax");
131 132 133 134
}

TEST(Layer_Test_LRN_spatial, Accuracy)
{
135
     testLayerUsingCaffeModels("layer_lrn_spatial");
136 137 138 139
}

TEST(Layer_Test_LRN_channels, Accuracy)
{
140
     testLayerUsingCaffeModels("layer_lrn_channels");
141 142 143 144
}

TEST(Layer_Test_Convolution, Accuracy)
{
145
     testLayerUsingCaffeModels("layer_convolution", true);
146 147
}

148
TEST(Layer_Test_DeConvolution, Accuracy)
149
{
150
     testLayerUsingCaffeModels("layer_deconvolution", true, false);
151 152 153 154
}

TEST(Layer_Test_InnerProduct, Accuracy)
{
155
     testLayerUsingCaffeModels("layer_inner_product", true);
156 157 158 159
}

TEST(Layer_Test_Pooling_max, Accuracy)
{
160
     testLayerUsingCaffeModels("layer_pooling_max");
161 162 163 164
}

TEST(Layer_Test_Pooling_ave, Accuracy)
{
165
     testLayerUsingCaffeModels("layer_pooling_ave");
166 167 168 169
}

TEST(Layer_Test_MVN, Accuracy)
{
170
     testLayerUsingCaffeModels("layer_mvn");
171 172 173 174 175 176 177 178
}

TEST(Layer_Test_Reshape, squeeze)
{
    LayerParams params;
    params.set("axis", 2);
    params.set("num_axes", 1);

179 180
    int sz[] = {4, 3, 1, 2};
    Mat inp(4, sz, CV_32F);
181 182
    std::vector<Mat> inpVec(1, inp);
    std::vector<Mat> outVec, intVec;
183 184

    Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
185
    runLayer(rl, inpVec, outVec);
186

187
    Mat& out = outVec[0];
188
    MatShape shape(out.size.p, out.size.p + out.dims);
189
    int sh0[] = {4, 3, 2};
190 191
    MatShape shape0(sh0, sh0+3);
    EXPECT_EQ(shape, shape0);
192 193
}

194 195
TEST(Layer_Test_BatchNorm, Accuracy)
{
196
     testLayerUsingCaffeModels("layer_batch_norm", true);
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
TEST(Layer_Test_ReLU, Accuracy)
{
     testLayerUsingCaffeModels("layer_relu");
}

TEST(Layer_Test_Dropout, Accuracy)
{
     testLayerUsingCaffeModels("layer_dropout");
}

TEST(Layer_Test_Concat, Accuracy)
{
     testLayerUsingCaffeModels("layer_concat");
}

214 215 216 217 218 219 220 221 222 223 224 225
//template<typename XMat>
//static void test_Layer_Concat()
//{
//    Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f);
//    std::vector<Blob> res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) };
//    Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f)));
//
//    runLayer(ConcatLayer::create(1), src, res);
//    normAssert(ref, res[0]);
//}
//TEST(Layer_Concat, Accuracy)
//{
226
//    test_Layer_Concat<Mat>());
227 228 229 230
//}
//OCL_TEST(Layer_Concat, Accuracy)
//{
//    OCL_ON(test_Layer_Concat<Mat>());
231
//    );
232
//}
233

234
static void test_Reshape_Split_Slice_layers()
235 236 237 238 239 240 241 242
{
    Net net;
    {
        Ptr<Importer> importer = createCaffeImporter(_tf("reshape_and_slice_routines.prototxt"));
        ASSERT_TRUE(importer != NULL);
        importer->populateNet(net);
    }

243
    Mat input(6, 12, CV_32F);
244
    RNG rng(0);
245
    rng.fill(input, RNG::UNIFORM, -1, 1);
246 247 248

    net.setBlob(".input", input);
    net.forward();
249
    Mat output = net.getBlob("output");
250 251 252

    normAssert(input, output);
}
253
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
254
{
255
    test_Reshape_Split_Slice_layers();
256 257
}

258 259 260
class Layer_LSTM_Test : public ::testing::Test
{
public:
261
    int numInp, numOut;
262
    Mat Wh, Wx, b;
263
    Ptr<LSTMLayer> layer;
264
    std::vector<Mat> inputs, outputs;
265

266 267
    Layer_LSTM_Test() {}

268
    void init(const MatShape &inpShape_, const MatShape &outShape_)
269
    {
270 271
        numInp = total(inpShape_);
        numOut = total(outShape_);
272

273 274 275
        Wh = Mat::ones(4 * numOut, numOut, CV_32F);
        Wx = Mat::ones(4 * numOut, numInp, CV_32F);
        b  = Mat::ones(4 * numOut, 1, CV_32F);
276

277
        layer = LSTMLayer::create(LayerParams());
278
        layer->setWeights(Wh, Wx, b);
279
        layer->setOutShape(outShape_);
280 281 282
    }
};

283
TEST_F(Layer_LSTM_Test, get_set_test)
284
{
285
    const int TN = 4;
286 287 288 289
    MatShape inpShape = shape(5, 3, 2);
    MatShape outShape = shape(3, 1, 2);
    MatShape inpResShape = concat(shape(TN), inpShape);
    MatShape outResShape = concat(shape(TN), outShape);
290

291 292 293 294
    init(inpShape, outShape);
    layer->setProduceCellOutput(true);
    layer->setUseTimstampsDim(false);
    layer->setOutShape(outShape);
295

296 297 298 299
    Mat C((int)outResShape.size(), &outResShape[0], CV_32F);
    randu(C, -1., 1.);
    Mat H = C.clone();
    randu(H, -1., 1.);
300

301 302 303 304
    Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F);
    randu(inp, -1., 1.);

    inputs.push_back(inp);
305 306
    runLayer(layer, inputs, outputs);

307
    EXPECT_EQ(2u, outputs.size());
308

309 310 311
    print(outResShape, "outResShape");
    print(shape(outputs[0]), "out0");
    print(shape(outputs[0]), "out1");
312

313 314
    EXPECT_EQ(outResShape, shape(outputs[0]));
    EXPECT_EQ(outResShape, shape(outputs[1]));
315 316 317 318

    EXPECT_EQ(0, layer->inputNameToIndex("x"));
    EXPECT_EQ(0, layer->outputNameToIndex("h"));
    EXPECT_EQ(1, layer->outputNameToIndex("c"));
319 320
}

321
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent)
322
{
323
    Ptr<LSTMLayer> layer = LSTMLayer::create(LayerParams());
324

325 326 327
    Mat Wx = blobFromNPY(_tf("lstm.prototxt.w_0.npy"));
    Mat Wh = blobFromNPY(_tf("lstm.prototxt.w_2.npy"));
    Mat b  = blobFromNPY(_tf("lstm.prototxt.w_1.npy"));
328 329
    layer->setWeights(Wh, Wx, b);

330 331
    Mat inp = blobFromNPY(_tf("recurrent.input.npy"));
    std::vector<Mat> inputs(1, inp), outputs;
332
    runLayer(layer, inputs, outputs);
333

334
    Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy"));
335 336 337 338 339
    normAssert(h_t_reference, outputs[0]);
}

TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent)
{
340
    Ptr<RNNLayer> layer = RNNLayer::create(LayerParams());
341 342 343 344 345 346 347

    layer->setWeights(
                blobFromNPY(_tf("rnn.prototxt.w_0.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_1.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_2.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_3.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_4.npy")) );
348

349
    std::vector<Mat> output, input(1, blobFromNPY(_tf("recurrent.input.npy")));
350 351
    runLayer(layer, input, output);

352
    Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy"));
353
    normAssert(h_ref, output[0]);
354 355
}

356 357 358 359

class Layer_RNN_Test : public ::testing::Test
{
public:
360
    int nX, nH, nO, nT, nS;
361
    Mat Whh, Wxh, bh, Who, bo;
362 363
    Ptr<RNNLayer> layer;

364
    std::vector<Mat> inputs, outputs;
365

366
    Layer_RNN_Test()
367
    {
368 369 370 371 372 373
        nT = 3;
        nS = 5;
        nX = 31;
        nH = 64;
        nO = 100;

374 375 376 377 378
        Whh = Mat::ones(nH, nH, CV_32F);
        Wxh = Mat::ones(nH, nX, CV_32F);
        bh  = Mat::ones(nH, 1, CV_32F);
        Who = Mat::ones(nO, nH, CV_32F);
        bo  = Mat::ones(nO, 1, CV_32F);
379

380
        layer = RNNLayer::create(LayerParams());
381 382
        layer->setProduceHiddenOutput(true);
        layer->setWeights(Wxh, bh, Whh, Who, bo);
383 384 385
    }
};

386
TEST_F(Layer_RNN_Test, get_set_test)
387
{
388 389 390 391
    int sz[] = { nT, nS, 1, nX };
    Mat inp(4, sz, CV_32F);
    randu(inp, -1., 1.);
    inputs.push_back(inp);
392
    runLayer(layer, inputs, outputs);
393

394
    EXPECT_EQ(outputs.size(), 2u);
395 396
    EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO));
    EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH));
397 398
}

399
}