structured_edge_detection.cpp 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include <vector>
#include <algorithm>
#include <iterator>
#include <iostream>
44
#include <cmath>
45

46
#include "precomp.hpp"
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

#include "advanced_types.hpp"

/********************* Helper functions *********************/

/*!
 * Lightweight wrapper over cv::resize
 *
 * \param src : source image to resize
 * \param dst : destination image size
 * \return resized image
 */
static cv::Mat imresize(const cv::Mat &src, const cv::Size &nSize)
{
    cv::Mat dst;
    if (nSize.width < src.size().width
    &&  nSize.height < src.size().height)
        cv::resize(src, dst, nSize, 0.0, 0.0, cv::INTER_AREA);
    else
        cv::resize(src, dst, nSize, 0.0, 0.0, cv::INTER_LINEAR);

    return dst;
}

/*!
 * The function filters src with triangle filter with radius equal rad
 *
 * \param src : source image to filter
 * \param rad : radius of filtering kernel
 * \return filtering result
 */
static cv::Mat imsmooth(const cv::Mat &src, const int rad)
{
    if (rad == 0)
        return src;
    else
    {
84
        const float p = 12.0f/rad/(rad + 2) - 2;
85 86 87 88 89 90 91 92 93
        cv::Mat dst;

        if (rad <= 1)
        {
            CV_INIT_VECTOR(kernelXY, float, {1/(p + 2), p/(p + 2), 1/(p + 2)});
            cv::sepFilter2D(src, dst, -1, kernelXY, kernelXY);
        }
        else
        {
94
            float nrml = CV_SQR(rad + 1.0f);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

            std::vector <float> kernelXY(2*rad + 1);
            for (int i = 0; i <= rad; ++i)
            {
                kernelXY[2*rad - i] = (i + 1) / nrml;
                kernelXY[i] = (i + 1) / nrml;
            }
            sepFilter2D(src, dst, -1, kernelXY, kernelXY);
        }

        return dst;
    }
}

/*!
 *  The function implements rgb to luv conversion in a way similar
 *  to UCSD computer vision toolbox
 *
 * \param src : source image (RGB, float, in [0;1]) to convert
 * \return converted image in luv colorspace
 */
static cv::Mat rgb2luv(const cv::Mat &src)
{
    cv::Mat dst(src.size(), src.type());

    const float a  = CV_CUBE(29.0f)/27;
    const float y0 = 8.0f/a;

    const float mX[] = {0.430574f, 0.341550f, 0.178325f};
    const float mY[] = {0.222015f, 0.706655f, 0.071330f};
    const float mZ[] = {0.020183f, 0.129553f, 0.939180f};

    const float maxi= 1.0f/270;
    const float minu=  -88*maxi;
    const float minv= -134*maxi;

    const float un = 0.197833f;
    const float vn = 0.468331f;

    // build (padded) lookup table for y->l conversion assuming y in [0,1]
    std::vector <float> lTable(1024);
    for (int i = 0; i < 1024; ++i)
    {
        float y = i/1024.0f;
        float l = y > y0 ? 116*powf(y, 1.0f/3.0f) - 16 : y*a;

        lTable[i] = l*maxi;
    }
    for (int i = 0; i < 40; ++i)
        lTable.push_back(*--lTable.end());

    const int nchannels = 3;

    for (int i = 0; i < src.rows; ++i)
    {
        const float *pSrc = src.ptr<float>(i);
        float *pDst = dst.ptr<float>(i);

        for (int j = 0; j < src.cols*nchannels; j += nchannels)
        {
            const float rgb[] = {pSrc[j + 0], pSrc[j + 1], pSrc[j + 2]};

            const float xyz[] = {mX[0]*rgb[0] + mX[1]*rgb[1] + mX[2]*rgb[2],
                                 mY[0]*rgb[0] + mY[1]*rgb[1] + mY[2]*rgb[2],
                                 mZ[0]*rgb[0] + mZ[1]*rgb[1] + mZ[2]*rgb[2]};
160
            const float nz = 1.0f / float(xyz[0] + 15*xyz[1] + 3*xyz[2] + 1e-35);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

            const float l = pDst[j] = lTable[cvFloor(1024*xyz[1])];

            pDst[j + 1] = l * (13*4*xyz[0]*nz - 13*un) - minu;;
            pDst[j + 2] = l * (13*9*xyz[1]*nz - 13*vn) - minv;
        }
    }

    return dst;
}

/*!
 * The function computes gradient magnitude and weighted (with magnitude)
 * orientation histogram. Magnitude is additionally normalized
 * by dividing on imsmooth(M, gnrmRad) + 0.01;
 *
 * \param src : source image
 * \param magnitude : gradient magnitude
 * \param histogram : gradient orientation nBins-channels histogram
 * \param nBins : number of gradient orientations
 * \param pSize : factor to downscale histogram
 * \param gnrmRad : radius for magnitude normalization
 */
static void gradientHist(const cv::Mat &src, cv::Mat &magnitude, cv::Mat &histogram,
                         const int nBins, const int pSize, const int gnrmRad)
{
    cv::Mat phase, Dx, Dy;

    magnitude.create( src.size(), cv::DataType<float>::type );
    phase.create( src.size(), cv::DataType<float>::type );
Bellaktris's avatar
Bellaktris committed
191 192
    histogram.create( cv::Size( cvRound(src.size().width/float(pSize)),
                                cvRound(src.size().height/float(pSize)) ),
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        CV_MAKETYPE(cv::DataType<float>::type, nBins) );

    histogram.setTo(0);

    cv::Sobel( src, Dx, cv::DataType<float>::type,
        1, 0, 1, 1.0, 0.0, cv::BORDER_REFLECT );
    cv::Sobel( src, Dy, cv::DataType<float>::type,
        0, 1, 1, 1.0, 0.0, cv::BORDER_REFLECT );

    int nchannels = src.channels();

    for (int i = 0; i < src.rows; ++i)
    {
        const float *pDx = Dx.ptr<float>(i);
        const float *pDy = Dy.ptr<float>(i);

        float *pMagnitude = magnitude.ptr<float>(i);
        float *pPhase = phase.ptr<float>(i);

        for (int j = 0; j < src.cols*nchannels; j += nchannels)
        {
Bellaktris's avatar
Bellaktris committed
214
            float fMagn = float(-1e-5), fdx = 0, fdy = 0;
215 216 217 218 219 220 221 222 223 224 225
            for (int k = 0; k < nchannels; ++k)
            {
                float cMagn = CV_SQR( pDx[j + k] ) + CV_SQR( pDy[j + k] );
                if (cMagn > fMagn)
                {
                    fMagn = cMagn;
                    fdx = pDx[j + k];
                    fdy = pDy[j + k];
                }
            }

226
            pMagnitude[j/nchannels] = sqrtf(fMagn);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

            float angle = cv::fastAtan2(fdy, fdx) / 180.0f - 1.0f * (fdy < 0);
            if (std::fabs(fdx) + std::fabs(fdy) < 1e-5)
                angle = 0.5f;
            pPhase[j/nchannels] = angle;
        }
    }

    magnitude /= imsmooth( magnitude, gnrmRad )
        + 0.01*cv::Mat::ones( magnitude.size(), magnitude.type() );

    for (int i = 0; i < phase.rows; ++i)
    {
        const float *pPhase = phase.ptr<float>(i);
        const float *pMagn  = magnitude.ptr<float>(i);

        float *pHist = histogram.ptr<float>(i/pSize);

        for (int j = 0; j < phase.cols; ++j)
            pHist[cvRound((j/pSize + pPhase[j])*nBins)] += pMagn[j] / CV_SQR(pSize);
    }
}

/********************* RFFeatureGetter class *********************/

namespace cv
{
254 255
namespace ximgproc
{
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

class RFFeatureGetterImpl : public RFFeatureGetter
{
public:
    /*!
     * Default constructor
     */
    RFFeatureGetterImpl() : name("RFFeatureGetter"){}

    /*!
     * The method extracts features from img and store them to features.
     * Extracted features are appropriate for StructuredEdgeDetection::predictEdges.
     *
     * \param src : source image (RGB, float, in [0;1]) to extract features
     * \param features : destination feature image
     *
     * \param gnrmRad : __rf.options.gradientNormalizationRadius
     * \param gsmthRad : __rf.options.gradientSmoothingRadius
     * \param shrink : __rf.options.shrinkNumber
     * \param outNum : __rf.options.numberOfOutputChannels
     * \param gradNum : __rf.options.numberOfGradientOrientations
     */
278
    virtual void getFeatures(const Mat &src, Mat &features, const int gnrmRad, const int gsmthRad,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
                             const int shrink, const int outNum, const int gradNum) const
    {
        cv::Mat luvImg = rgb2luv(src);

        std::vector <cv::Mat> featureArray;

        cv::Size nSize = src.size() / float(shrink);
        split( imresize(luvImg, nSize), featureArray );

        CV_INIT_VECTOR(scales, float, {1.0f, 0.5f});

        for (size_t i = 0; i < scales.size(); ++i)
        {
            int pSize = std::max( 1, int(shrink*scales[i]) );

            cv::Mat magnitude, histogram;
            gradientHist(/**/ imsmooth(imresize(luvImg, scales[i]*src.size()), gsmthRad),
                magnitude, histogram, gradNum, pSize, gnrmRad /**/);

            featureArray.push_back(/**/ imresize( magnitude, nSize ).clone() /**/);
            featureArray.push_back(/**/ imresize( histogram, nSize ).clone() /**/);
        }

        // Mixing
        int resType = CV_MAKETYPE(cv::DataType<float>::type, outNum);
        features.create(nSize, resType);

        std::vector <int> fromTo;
        for (int i = 0; i < 2*outNum; ++i)
            fromTo.push_back(i/2);

        mixChannels(featureArray, features, fromTo);
    }

protected:
    /*! algorithm name */
    String name;
};

318
Ptr<RFFeatureGetter> createRFFeatureGetter()
319 320 321 322
{
        return makePtr<RFFeatureGetterImpl>();
}

323 324
}
}
325 326 327 328 329

/********************* StructuredEdgeDetection class *********************/

namespace cv
{
330 331
namespace ximgproc
{
332 333 334 335 336 337 338 339 340 341

class StructuredEdgeDetectionImpl : public StructuredEdgeDetection
{
public:
    /*!
     * This constructor loads __rf model from filename
     *
     * \param filename : name of the file where the model is stored
     */
    StructuredEdgeDetectionImpl(const cv::String &filename,
342
        Ptr<const RFFeatureGetter> _howToGetFeatures)
343
        : name("StructuredEdgeDetection"),
344
          howToGetFeatures( (!_howToGetFeatures.empty())
Bellaktris's avatar
Bellaktris committed
345
                          ? _howToGetFeatures
346
                          : createRFFeatureGetter().staticCast<const RFFeatureGetter>() )
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    {
        cv::FileStorage modelFile(filename, FileStorage::READ);
        CV_Assert( modelFile.isOpened() );

        __rf.options.stride
            = modelFile["options"]["stride"];
        __rf.options.shrinkNumber
            = modelFile["options"]["shrinkNumber"];
        __rf.options.patchSize
            = modelFile["options"]["patchSize"];
        __rf.options.patchInnerSize
            = modelFile["options"]["patchInnerSize"];

        __rf.options.numberOfGradientOrientations
            = modelFile["options"]["numberOfGradientOrientations"];
        __rf.options.gradientSmoothingRadius
            = modelFile["options"]["gradientSmoothingRadius"];
        __rf.options.regFeatureSmoothingRadius
            = modelFile["options"]["regFeatureSmoothingRadius"];
        __rf.options.ssFeatureSmoothingRadius
            = modelFile["options"]["ssFeatureSmoothingRadius"];
        __rf.options.gradientNormalizationRadius
            = modelFile["options"]["gradientNormalizationRadius"];

        __rf.options.selfsimilarityGridSize
            = modelFile["options"]["selfsimilarityGridSize"];

        __rf.options.numberOfTrees
            = modelFile["options"]["numberOfTrees"];
        __rf.options.numberOfTreesToEvaluate
            = modelFile["options"]["numberOfTreesToEvaluate"];

        __rf.options.numberOfOutputChannels =
            2*(__rf.options.numberOfGradientOrientations + 1) + 3;
        //--------------------------------------------

        cv::FileNode childs = modelFile["childs"];
        cv::FileNode featureIds = modelFile["featureIds"];

        std::vector <int> currentTree;

        for(cv::FileNodeIterator it = childs.begin();
            it != childs.end(); ++it)
        {
            (*it) >> currentTree;
            std::copy(currentTree.begin(), currentTree.end(),
                std::back_inserter(__rf.childs));
        }

        for(cv::FileNodeIterator it = featureIds.begin();
            it != featureIds.end(); ++it)
        {
            (*it) >> currentTree;
            std::copy(currentTree.begin(), currentTree.end(),
                std::back_inserter(__rf.featureIds));
        }

        cv::FileNode thresholds = modelFile["thresholds"];
        std::vector <float> fcurrentTree;

        for(cv::FileNodeIterator it = thresholds.begin();
            it != thresholds.end(); ++it)
        {
            (*it) >> fcurrentTree;
            std::copy(fcurrentTree.begin(), fcurrentTree.end(),
                std::back_inserter(__rf.thresholds));
        }

        cv::FileNode edgeBoundaries = modelFile["edgeBoundaries"];
        cv::FileNode edgeBins = modelFile["edgeBins"];

        for(cv::FileNodeIterator it = edgeBoundaries.begin();
            it != edgeBoundaries.end(); ++it)
        {
            (*it) >> currentTree;
            std::copy(currentTree.begin(), currentTree.end(),
                std::back_inserter(__rf.edgeBoundaries));
        }

        for(cv::FileNodeIterator it = edgeBins.begin();
            it != edgeBins.end(); ++it)
        {
            (*it) >> currentTree;
            std::copy(currentTree.begin(), currentTree.end(),
                std::back_inserter(__rf.edgeBins));
        }

        __rf.numberOfTreeNodes = int( __rf.childs.size() ) / __rf.options.numberOfTrees;
    }

    /*!
     * The function detects edges in src and draw them to dst
     *
     * \param src : source image (RGB, float, in [0;1]) to detect edges
     * \param dst : destination image (grayscale, float, in [0;1])
     *              where edges are drawn
     */
    void detectEdges(const cv::Mat &src, cv::Mat &dst) const
    {
        CV_Assert( src.type() == CV_32FC3 );

        dst.create( src.size(), cv::DataType<float>::type );

        int padding = ( __rf.options.patchSize
            - __rf.options.patchInnerSize )/2;

        cv::Mat nSrc;
        copyMakeBorder( src, nSrc, padding, padding,
            padding, padding, BORDER_REFLECT );

        NChannelsMat features;
        createRFFeatureGetter()->getFeatures( nSrc, features,
            __rf.options.gradientNormalizationRadius,
            __rf.options.gradientSmoothingRadius,
            __rf.options.shrinkNumber,
            __rf.options.numberOfOutputChannels,
            __rf.options.numberOfGradientOrientations );
        predictEdges( features, dst );
    }

protected:
    /*!
     * Private method used by process method. The function
     * predict edges in n-channel feature image and store them to dst.
     *
     * \param features : source image (n-channels, float) to detect edges
     * \param dst : destination image (grayscale, float, in [0;1]) where edges are drawn
     */
    void predictEdges(const NChannelsMat &features, cv::Mat &dst) const
    {
        int shrink = __rf.options.shrinkNumber;
        int rfs = __rf.options.regFeatureSmoothingRadius;
        int sfs = __rf.options.ssFeatureSmoothingRadius;

        int nTreesEval = __rf.options.numberOfTreesToEvaluate;
        int nTrees = __rf.options.numberOfTrees;
        int nTreesNodes = __rf.numberOfTreeNodes;

        const int nchannels = features.channels();
        int pSize  = __rf.options.patchSize;

        int nFeatures = CV_SQR(pSize/shrink)*nchannels;
        int outNum = __rf.options.numberOfOutputChannels;

        int stride = __rf.options.stride;
        int ipSize = __rf.options.patchInnerSize;
        int gridSize = __rf.options.selfsimilarityGridSize;

        const int height = cvCeil( double(features.rows*shrink - pSize) / stride );
        const int width  = cvCeil( double(features.cols*shrink - pSize) / stride );
        // image size in patches with overlapping

        //-------------------------------------------------------------------------

        NChannelsMat regFeatures = imsmooth(features, cvRound(rfs / float(shrink)));
        NChannelsMat  ssFeatures = imsmooth(features, cvRound(sfs / float(shrink)));

        NChannelsMat indexes(height, width, CV_MAKETYPE(DataType<int>::type, nTreesEval));

        std::vector <int> offsetI(/**/ CV_SQR(pSize/shrink)*nchannels, 0);
        for (int i = 0; i < CV_SQR(pSize/shrink)*nchannels; ++i)
        {
            int z = i / CV_SQR(pSize/shrink);
            int y = ( i % CV_SQR(pSize/shrink) )/(pSize/shrink);
            int x = ( i % CV_SQR(pSize/shrink) )%(pSize/shrink);

            offsetI[i] = x*features.cols*nchannels + y*nchannels + z;
        }
        // lookup table for mapping linear index to offsets

        std::vector <int> offsetE(/**/ CV_SQR(ipSize)*outNum, 0);
        for (int i = 0; i < CV_SQR(ipSize)*outNum; ++i)
        {
            int z = i / CV_SQR(ipSize);
            int y = ( i % CV_SQR(ipSize) )/ipSize;
            int x = ( i % CV_SQR(ipSize) )%ipSize;

            offsetE[i] = x*dst.cols*outNum + y*outNum + z;
        }
        // lookup table for mapping linear index to offsets

        std::vector <int> offsetX( CV_SQR(gridSize)*(CV_SQR(gridSize) - 1)/2 * nchannels, 0);
        std::vector <int> offsetY( CV_SQR(gridSize)*(CV_SQR(gridSize) - 1)/2 * nchannels, 0);

        int hc = cvRound( (pSize/shrink) / (2.0*gridSize) );
        // half of cell
        std::vector <int> gridPositions;
        for(int i = 0; i < gridSize; i++)
535
            gridPositions.push_back( int( (i+1)*(pSize/shrink + 2*hc - 1)/(gridSize + 1.0) - hc + 0.5f ) );
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

        for (int i = 0, n = 0; i < CV_SQR(gridSize)*nchannels; ++i)
            for (int j = (i%CV_SQR(gridSize)) + 1; j < CV_SQR(gridSize); ++j, ++n)
            {
                int z = i / CV_SQR(gridSize);

                int x1 = gridPositions[i%CV_SQR(gridSize)%gridSize];
                int y1 = gridPositions[i%CV_SQR(gridSize)/gridSize];

                int x2 = gridPositions[j%gridSize];
                int y2 = gridPositions[j/gridSize];

                offsetX[n] = x1*features.cols*nchannels + y1*nchannels + z;
                offsetY[n] = x2*features.cols*nchannels + y2*nchannels + z;
            }
            // lookup tables for mapping linear index to offset pairs

        for (int i = 0; i < height; ++i)
        {
            float *regFeaturesPtr = regFeatures.ptr<float>(i*stride/shrink);
            float  *ssFeaturesPtr = ssFeatures.ptr<float>(i*stride/shrink);

            int *indexPtr = indexes.ptr<int>(i);

            for (int j = 0, k = 0; j < width; ++k, j += !(k %= nTreesEval))
                // for j,k in [0;width)x[0;nTreesEval)
            {
                int baseNode = ( ((i + j)%(2*nTreesEval) + k)%nTrees )*nTreesNodes;
                int currentNode = baseNode;
                // select root node of the tree to evaluate

                int offset = (j*stride/shrink)*nchannels;
                while ( __rf.childs[currentNode] != 0 )
                {
                    int currentId = __rf.featureIds[currentNode];
                    float currentFeature;

                    if (currentId >= nFeatures)
                    {
                        int xIndex = offsetX[currentId - nFeatures];
                        float A = ssFeaturesPtr[offset + xIndex];

                        int yIndex = offsetY[currentId - nFeatures];
                        float B = ssFeaturesPtr[offset + yIndex];

                        currentFeature = A - B;
                    }
                    else
                        currentFeature = regFeaturesPtr[offset + offsetI[currentId]];

                    // compare feature to threshold and move left or right accordingly
                    if (currentFeature < __rf.thresholds[currentNode])
                        currentNode = baseNode + __rf.childs[currentNode] - 1;
                    else
                        currentNode = baseNode + __rf.childs[currentNode];
                }

                indexPtr[j*nTreesEval + k] = currentNode;
            }
        }

        NChannelsMat dstM(dst.size(),
            CV_MAKETYPE(DataType<float>::type, outNum));
        dstM.setTo(0);

        float step = 2.0f * CV_SQR(stride) / CV_SQR(ipSize) / nTreesEval;
        for (int i = 0; i < height; ++i)
        {
            int *pIndex = indexes.ptr<int>(i);
            float *pDst = dstM.ptr<float>(i*stride);

                for (int j = 0, k = 0; j < width; ++k, j += !(k %= nTreesEval))
                {// for j,k in [0;width)x[0;nTreesEval)

                    int currentNode = pIndex[j*nTreesEval + k];

                    int start  = __rf.edgeBoundaries[currentNode];
                    int finish = __rf.edgeBoundaries[currentNode + 1];

                    if (start == finish)
                        continue;

                    int offset = j*stride*outNum;
                    for (int p = start; p < finish; ++p)
                        pDst[offset + offsetE[__rf.edgeBins[p]]] += step;
                }
        }

624
        cv::reduce( dstM.reshape(1, int( dstM.total() ) ), dstM, 2, CV_REDUCE_SUM);
625 626 627 628 629 630 631 632 633
        imsmooth( dstM.reshape(1, dst.rows), 1 ).copyTo(dst);
    }

/********************* Members *********************/
protected:
    /*! algorithm name */
    String name;

    /*! optional feature getter (getFeatures method) */
634
    Ptr<const RFFeatureGetter> howToGetFeatures;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

    /*! random forest used to detect edges */
    struct RandomForest
    {
        /*! random forest options, e.g. number of trees */
        struct RandomForestOptions
        {
            // model params

            int numberOfOutputChannels; /*!< number of edge orientation bins for output */

            int patchSize;              /*!< width of image patches */
            int patchInnerSize;         /*!< width of predicted part inside patch*/

            // feature params

            int regFeatureSmoothingRadius;    /*!< radius for smoothing of regular features
                                               *   (using convolution with triangle filter) */

            int ssFeatureSmoothingRadius;     /*!< radius for smoothing of additional features
                                               *   (using convolution with triangle filter) */

            int shrinkNumber;                 /*!< amount to shrink channels */

            int numberOfGradientOrientations; /*!< number of orientations per gradient scale */

            int gradientSmoothingRadius;      /*!< radius for smoothing of gradients
                                               *   (using convolution with triangle filter) */

            int gradientNormalizationRadius;  /*!< gradient normalization radius */
            int selfsimilarityGridSize;       /*!< number of self similarity cells */

            // detection params
            int numberOfTrees;            /*!< number of trees in forest to train */
            int numberOfTreesToEvaluate;  /*!< number of trees to evaluate per location */

            int stride;                   /*!< stride at which to compute edges */

        } options;

        int numberOfTreeNodes;

        std::vector <int> featureIds;     /*!< feature coordinate thresholded at k-th node */
        std::vector <float> thresholds;   /*!< threshold applied to featureIds[k] at k-th node */
        std::vector <int> childs;         /*!< k --> child[k] - 1, child[k] */

        std::vector <int> edgeBoundaries; /*!< ... */
        std::vector <int> edgeBins;       /*!< ... */
    } __rf;
};

Ptr<StructuredEdgeDetection> createStructuredEdgeDetection(const String &model,
687
    Ptr<const RFFeatureGetter> howToGetFeatures)
688 689 690 691
{
        return makePtr<StructuredEdgeDetectionImpl>(model, howToGetFeatures);
}

692
}
693
}