tr_icdar_benchmark.cpp 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

42 43
#include <iostream>
#include <opencv2/opencv_modules.hpp>
44

45
#ifdef HAVE_OPENCV_TEXT
46

47 48
#include "opencv2/datasets/tr_icdar.hpp"
#include <opencv2/core.hpp>
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#include "opencv2/text.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"

#include <cstdio>
#include <cstdlib> // atoi

#include <string>
#include <vector>

using namespace std;
using namespace cv;
using namespace cv::datasets;
using namespace cv::text;

//Calculate edit distance between two words
size_t edit_distance(const string& A, const string& B);
size_t min(size_t x, size_t y, size_t z);
bool   isRepetitive(const string& s);
bool   sort_by_lenght(const string &a, const string &b);
//Draw ER's in an image via floodFill
void   er_draw(vector<Mat> &channels, vector<vector<ERStat> > &regions, vector<Vec2i> group, Mat& segmentation);

size_t min(size_t x, size_t y, size_t z)
{
    return x < y ? min(x,z) : min(y,z);
}

size_t edit_distance(const string& A, const string& B)
{
    size_t NA = A.size();
    size_t NB = B.size();

    vector< vector<size_t> > M(NA + 1, vector<size_t>(NB + 1));

    for (size_t a = 0; a <= NA; ++a)
        M[a][0] = a;

    for (size_t b = 0; b <= NB; ++b)
        M[0][b] = b;

    for (size_t a = 1; a <= NA; ++a)
        for (size_t b = 1; b <= NB; ++b)
        {
            size_t x = M[a-1][b] + 1;
            size_t y = M[a][b-1] + 1;
            size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1);
            M[a][b] = min(x,y,z);
        }

    return M[A.size()][B.size()];
}

bool sort_by_lenght(const string &a, const string &b){return (a.size()>b.size());}

bool isRepetitive(const string& s)
{
    int count = 0;
    for (int i=0; i<(int)s.size(); i++)
    {
        if ((s[i] == 'i') ||
                (s[i] == 'l') ||
                (s[i] == 'I'))
            count++;
    }
    if (count > ((int)s.size()+1)/2)
    {
        return true;
    }
    return false;
}


void er_draw(vector<Mat> &channels, vector<vector<ERStat> > &regions, vector<Vec2i> group, Mat& segmentation)
{
    for (int r=0; r<(int)group.size(); r++)
    {
        ERStat er = regions[group[r][0]][group[r][1]];
        if (er.parent != NULL) // deprecate the root region
        {
            int newMaskVal = 255;
            int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
            floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
                      Scalar(255),0,Scalar(er.level),Scalar(0),flags);
        }
    }
}

137 138 139 140 141 142
// std::toupper is int->int
static char char_toupper(char ch)
{
    return (char)std::toupper((int)ch);
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
int main(int argc, char *argv[])
{
    const char *keys =
            "{ help h usage ? |    | show this message }"
            "{ path p         |true| path to dataset root folder }"
            "{ ws wordspotting|    | evaluate \"word spotting\" results }"
            "{ lex lexicon    |1   | 0:no-lexicon, 1:100-words, 2:full-lexicon }";

    CommandLineParser parser(argc, argv, keys);
    string path(parser.get<string>("path"));
    if (parser.has("help") || path=="true")
    {
        parser.printMessage();
        return -1;
    }

    bool is_word_spotting = parser.has("ws");
    int selected_lex = parser.get<int>("lex");
    if ((selected_lex < 0) || (selected_lex > 2))
    {
        parser.printMessage();
        printf("Unsupported lex value.\n");
        return -1;
    }

    // loading train & test images description
    Ptr<TR_icdar> dataset = TR_icdar::create();
    dataset->load(path);


    vector<double> f1Each;

    unsigned int correctNum = 0;
    unsigned int returnedNum = 0;
    unsigned int returnedCorrectNum = 0;

    vector< Ptr<Object> >& test = dataset->getTest();
    unsigned int num = 0;
    for (vector< Ptr<Object> >::iterator itT=test.begin(); itT!=test.end(); ++itT)
    {
        TR_icdarObj *example = static_cast<TR_icdarObj *>((*itT).get());

        num++;
        printf("processed image: %u, name: %s\n", num, example->fileName.c_str());

        vector<string> empty_lexicon;
        vector<string> *lex;
        switch (selected_lex)
        {
            case 0:
                lex = &empty_lexicon;
                break;
            case 2:
                lex = &example->lexFull;
                break;
            default:
                lex = &example->lex100;
                break;
        }

        correctNum += example->words.size();
        unsigned int correctNumEach = example->words.size();

        // Take care of dontcare regions t.value == "###"
        for (size_t w=0; w<example->words.size(); w++)
        {
            string w_upper = example->words[w].value;
210
            transform(w_upper.begin(), w_upper.end(), w_upper.begin(), char_toupper);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            if ((find (lex->begin(), lex->end(), w_upper) == lex->end()) &&
                (is_word_spotting) && (selected_lex != 0))
                example->words[w].value = "###";
            if ( (example->words[w].value == "###") || (example->words[w].value.size()<3) )
            {
                correctNum --;
                correctNumEach --;
            }
        }

        unsigned int returnedNumEach = 0;
        unsigned int returnedCorrectNumEach = 0;

        Mat image = imread((path+"/test/"+example->fileName).c_str());

        /*Text Detection*/

        // Extract channels to be processed individually
        vector<Mat> channels;

        Mat grey;
        cvtColor(image,grey,COLOR_RGB2GRAY);

        // Notice here we are only using grey channel, see textdetection.cpp for example with more channels
        channels.push_back(grey);
        channels.push_back(255-grey);


        // Create ERFilter objects with the 1st and 2nd sworde default classifiers
        Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
        Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);

        vector<vector<ERStat> > regions(channels.size());
        // Apply the default cascade classifier to each independent channel (could be done in parallel)
        for (int c=0; c<(int)channels.size(); c++)
        {
            er_filter1->run(channels[c], regions[c]);
            er_filter2->run(channels[c], regions[c]);
        }

        // Detect character groups
        vector< vector<Vec2i> > nm_region_groups;
        vector<Rect> nm_boxes;
        erGrouping(image, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ);

        /*Text Recognition (OCR)*/

        Ptr<OCRTesseract> ocr = OCRTesseract::create();
        bool ocr_is_tesseract = true;

        vector<string> final_words;
        vector<Rect>   final_boxes;
        vector<float>  final_confs;
        for (int i=0; i<(int)nm_boxes.size(); i++)
        {
            Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
            er_draw(channels, regions, nm_region_groups[i], group_img);
            if (ocr_is_tesseract)
            {
                group_img(nm_boxes[i]).copyTo(group_img);
                copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
            } else {
                group_img(Rect(1,1,image.cols,image.rows)).copyTo(group_img);
            }

            string output;
            vector<Rect>   boxes;
            vector<string> words;
            vector<float>  confidences;
            ocr->run(grey, group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);

            output.erase(remove(output.begin(), output.end(), '\n'), output.end());
            //cout << "OCR output = \"" << output << "\" lenght = " << output.size() << endl;

            if (output.size() < 3)
                continue;

            for (int j=0; j<(int)boxes.size(); j++)
            {
                if (ocr_is_tesseract)
                {
                    boxes[j].x += nm_boxes[i].x-15;
                    boxes[j].y += nm_boxes[i].y-15;
                }

lluis's avatar
lluis committed
296 297
                float min_confidence  = (ocr_is_tesseract)? (float)51. : (float)0.;
                float min_confidence4 = (ocr_is_tesseract)? (float)60. : (float)0.;
298 299 300 301 302 303 304 305 306
                //cout << "  word = " << words[j] << "\t confidence = " << confidences[j] << endl;
                if ((words[j].size() < 2) || (confidences[j] < min_confidence) ||
                    ((words[j].size()==2) && (words[j][0] == words[j][1])) ||
                    ((words[j].size()< 4) && (confidences[j] < min_confidence4)) ||
                     isRepetitive(words[j]))
                {
                    continue;
                }

307
                std::transform(words[j].begin(), words[j].end(), words[j].begin(), char_toupper);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

                /* Increase confidence of predicted words matching a word in the lexicon */
                if (lex->size() > 0)
                {
                    if (find(lex->begin(), lex->end(), words[j]) == lex->end())
                        confidences[j] = 200;
                }

                final_words.push_back(words[j]);
                final_boxes.push_back(boxes[j]);
                final_confs.push_back(confidences[j]);
            }

        }

        /* Non Maximal Suppression using OCR confidence */
        float thr = 0.5;

        for (size_t i=0; i<final_words.size(); )
        {
            int to_delete = -1;
            for (size_t j=i+1; j<final_words.size(); )
            {
                to_delete = -1;
                Rect intersection = final_boxes[i] & final_boxes[j];
                float IoU = (float)intersection.area() / (final_boxes[i].area() + final_boxes[j].area() - intersection.area());
                if ((IoU > thr) || (intersection.area() > 0.8*final_boxes[i].area()) || (intersection.area() > 0.8*final_boxes[j].area()))
                {
                    // if regions overlap more than thr delete the one with lower confidence
                    to_delete = (final_confs[i] < final_confs[j]) ? i : j;

                    if (to_delete == (int)j )
                    {
                        final_words.erase(final_words.begin()+j);
                        final_boxes.erase(final_boxes.begin()+j);
                        final_confs.erase(final_confs.begin()+j);
                        continue;
                    } else {
                        break;
                    }
                }
                j++;
            }
            if (to_delete == (int)i )
            {
                final_words.erase(final_words.begin()+i);
                final_boxes.erase(final_boxes.begin()+i);
                final_confs.erase(final_confs.begin()+i);
                continue;
            }
            i++;
        }

        /* Predicted words which are not in the lexicon are filtered
           or changed to match one (when edit distance ratio < 0.34)*/
lluis's avatar
lluis committed
363
        float max_edit_distance_ratio = (float)0.34;
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        for (size_t j=0; j<final_boxes.size(); j++)
        {

            if (lex->size() > 0)
            {
                if (find(lex->begin(), lex->end(), final_words[j]) == lex->end())
                {
                    int best_match = -1;
                    int best_dist  = final_words[j].size();
                    for (size_t l=0; l<lex->size(); l++)
                    {
                        int dist = edit_distance(lex->at(l),final_words[j]);
                        if (dist < best_dist)
                        {
                            best_match = l;
                            best_dist = dist;
                        }
                    }
                    if (best_dist/final_words[j].size() < max_edit_distance_ratio)
                        final_words[j] = lex->at(best_match);
                    else
                        continue;
                }
            }

            if ((find (lex->begin(), lex->end(), final_words[j])
                 == lex->end()) && (is_word_spotting) && (selected_lex != 0))
               continue;

            // Output final recognition in csv format compatible with the ICDAR Competition
            /*cout << final_boxes[j].tl().x << ","
                 << final_boxes[j].tl().y << ","
                 << min(final_boxes[j].br().x,image.cols-2)
                 << "," << final_boxes[j].tl().y << ","
                 << min(final_boxes[j].br().x,image.cols-2) << ","
                 << min(final_boxes[j].br().y,image.rows-2) << ","
                 << final_boxes[j].tl().x << ","
                 << min(final_boxes[j].br().y,image.rows-2) << ","
                 << final_words[j] << endl ;*/

            returnedNum++;
            returnedNumEach++;

            bool matched = false;
            for (vector<word>::iterator it=example->words.begin(); it!=example->words.end(); ++it)
            {
                word &t = (*it);

                // ICDAR protocol accepts recognition up to the first non alphanumeric char
                string alnum_value = t.value;
                for (size_t c=0; c<alnum_value.size(); c++)
                {
                    if (!isalnum(alnum_value[c]))
                    {
                        alnum_value = alnum_value.substr(0,c);
                        break;
                    }
                }

423
                std::transform(t.value.begin(), t.value.end(), t.value.begin(), char_toupper);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
                if (((t.value==final_words[j]) || (alnum_value==final_words[j])) &&
                    !(final_boxes[j].tl().x > t.x+t.width || final_boxes[j].br().x < t.x ||
                      final_boxes[j].tl().y > t.y+t.height || final_boxes[j].br().y < t.y))
                {
                    matched = true;
                    returnedCorrectNum++;
                    returnedCorrectNumEach++;
                    //cout << "OK!" << endl;
                    break;
                }
            }

            if (!matched) // Take care of dontcare regions t.value == "###"
            for (vector<word>::iterator it=example->words.begin(); it!=example->words.end(); ++it)
            {
                word &t = (*it);
440
                std::transform(t.value.begin(), t.value.end(), t.value.begin(), char_toupper);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
                if ((t.value == "###") &&
                     !(final_boxes[j].tl().x > t.x+t.width || final_boxes[j].br().x < t.x ||
                      final_boxes[j].tl().y > t.y+t.height || final_boxes[j].br().y < t.y))
                {
                    matched = true;
                    returnedNum--;
                    returnedNumEach--;
                    //cout << "DontCare!" << endl;
                    break;
                }
            }
            //if (!matched) cout << "FAIL." << endl;
        }

        double p = 0.0;
        if (0 != returnedNumEach)
        {
            p = 1.0*returnedCorrectNumEach/returnedNumEach;
        }
        double r = 0.0;
        if (0 != correctNumEach)
        {
            r = 1.0*returnedCorrectNumEach/correctNumEach;
        }
        double f1 = 0.0;
        if (0 != p+r)
        {
            f1 = 2*(p*r)/(p+r);
        }
        if ( (correctNumEach == 0) && (returnedNumEach == 0) )
        {
            p  = 1.;
            r  = 1.;
            f1 = 1.;
        }
        //printf("|%f|%f|%f|\n",r,p,f1);
        f1Each.push_back(f1);
    }

    double p = 1.0*returnedCorrectNum/returnedNum;
    double r = 1.0*returnedCorrectNum/correctNum;
    double f1 = 2*(p*r)/(p+r);

    printf("\n-------------------------------------------------------------------------\n");
    printf("ICDAR2015 -- Challenge 2: \"Focused Scene Text\" -- Task 4 \"End-to-End\"\n");
    if (is_word_spotting) printf("             Word spotting results -- ");
    else printf("             End-to-End recognition results -- ");
    switch (selected_lex)
    {
        case 0:
            printf("generic recognition (no given lexicon)\n");
            break;
        case 2:
            printf("weakly contextualized lexicon (624 words)\n");
            break;
        default:
            printf("strongly contextualized lexicon (100 words)\n");
            break;
    }
    printf("             Recall: %f | Precision: %f | F-score: %f\n", r, p, f1);
    printf("-------------------------------------------------------------------------\n\n");

    /*double mf1 = 0.0;
    for (vector<double>::iterator it=f1Each.begin(); it!=f1Each.end(); ++it)
    {
        mf1 += *it;
    }
    mf1 /= f1Each.size();
    printf("mean f1: %f\n", mf1);*/

    return 0;
}
513 514 515 516 517 518 519 520 521 522

#else

int main()
{
    std::cerr << "OpenCV was built without text module" << std::endl;
    return 0;
}

#endif // HAVE_OPENCV_TEXT