retinacolor.cpp 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
**  Creation - enhancement process 2007-2011
**      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
**                          License Agreement
**               For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
**               For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
**    this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
**    this list of conditions and the following disclaimer in the documentation
**    and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
**    derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/

#include "precomp.hpp"

#include "retinacolor.hpp"

// @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/

#include <iostream>
#include <ctime>

namespace cv
{
namespace bioinspired
{
// init static values
static float _LMStoACr1Cr2[]={1.0,  1.0, 0.0,  1.0, -1.0, 0.0,  -0.5, -0.5, 1.0};
//static double _ACr1Cr2toLMS[]={0.5,  0.5, 0.0,   0.5, -0.5, 0.0,  0.5,  0.0, 1.0};
static float _LMStoLab[]={0.5774f, 0.5774f, 0.5774f, 0.4082f, 0.4082f, -0.8165f, 0.7071f, -0.7071f, 0.f};

// constructor/desctructor
RetinaColor::RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod)
:BasicRetinaFilter(NBrows, NBcolumns, 3),
 _colorSampling(NBrows*NBcolumns),
 _RGBmosaic(NBrows*NBcolumns*3),
 _tempMultiplexedFrame(NBrows*NBcolumns),
 _demultiplexedTempBuffer(NBrows*NBcolumns*3),
 _demultiplexedColorFrame(NBrows*NBcolumns*3),
 _chrominance(NBrows*NBcolumns*3),
 _colorLocalDensity(NBrows*NBcolumns*3),
 _imageGradient(NBrows*NBcolumns*2)
{
    // link to parent buffers (let's recycle !)
    _luminance=&_filterOutput;
    _multiplexedFrame=&_localBuffer;

    _objectInit=false;
    _samplingMethod=samplingMethod;
    _saturateColors=false;
    _colorSaturationValue=4.0;

    // set default spatio-temporal filter parameters
    setLPfilterParameters(0.0, 0.0, 1.5);
    setLPfilterParameters(0.0, 0.0, 10.5, 1);// for the low pass filter dedicated to contours energy extraction (demultiplexing process)
    setLPfilterParameters(0.f, 0.f, 0.9f, 2);

    // init default value on image Gradient
    _imageGradient=0.57f;

    // init color sampling map
    _initColorSampling();

    // flush all buffers
    clearAllBuffers();
}

RetinaColor::~RetinaColor()
{

}

/**
* function that clears all buffers of the object
*/
void RetinaColor::clearAllBuffers()
{
    BasicRetinaFilter::clearAllBuffers();
    _tempMultiplexedFrame=0.f;
    _demultiplexedTempBuffer=0.f;

    _demultiplexedColorFrame=0.f;
    _chrominance=0.f;
    _imageGradient=0.57f;
}

/**
* resize retina color filter object (resize all allocated buffers)
* @param NBrows: the new height size
* @param NBcolumns: the new width size
*/
void RetinaColor::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
    BasicRetinaFilter::clearAllBuffers();
    _colorSampling.resize(NBrows*NBcolumns);
    _RGBmosaic.resize(NBrows*NBcolumns*3);
    _tempMultiplexedFrame.resize(NBrows*NBcolumns);
    _demultiplexedTempBuffer.resize(NBrows*NBcolumns*3);
    _demultiplexedColorFrame.resize(NBrows*NBcolumns*3);
    _chrominance.resize(NBrows*NBcolumns*3);
    _colorLocalDensity.resize(NBrows*NBcolumns*3);
    _imageGradient.resize(NBrows*NBcolumns*2);

    // link to parent buffers (let's recycle !)
    _luminance=&_filterOutput;
    _multiplexedFrame=&_localBuffer;

    // init color sampling map
    _initColorSampling();

    // clean buffers
    clearAllBuffers();
}


void RetinaColor::_initColorSampling()
{

    // filling the conversion table for multiplexed <=> demultiplexed frame
    srand((unsigned)time(NULL));

    // preInit cones probabilities
    _pR=_pB=_pG=0;
    switch (_samplingMethod)
    {
    case RETINA_COLOR_RANDOM:
        for (unsigned int index=0 ; index<this->getNBpixels(); ++index)
        {

            // random RGB sampling
            unsigned int colorIndex=rand()%24;

            if (colorIndex<8){
                colorIndex=0;

                ++_pR;
            }else
            {
                if (colorIndex<21){
                    colorIndex=1;
                    ++_pG;
                }else{
                    colorIndex=2;
                    ++_pB;
                }
            }
            _colorSampling[index] = colorIndex*this->getNBpixels()+index;
        }
        _pR/=(float)this->getNBpixels();
        _pG/=(float)this->getNBpixels();
        _pB/=(float)this->getNBpixels();
        std::cout<<"Color channels proportions: pR, pG, pB= "<<_pR<<", "<<_pG<<", "<<_pB<<", "<<std::endl;
        break;
    case RETINA_COLOR_DIAGONAL:
        for (unsigned int index=0 ; index<this->getNBpixels(); ++index)
        {
            _colorSampling[index] = index+((index%3+(index%_filterOutput.getNBcolumns()))%3)*_filterOutput.getNBpixels();
        }
        _pR=_pB=_pG=1.f/3;
        break;
    case RETINA_COLOR_BAYER: // default sets bayer sampling
        for (unsigned int index=0 ; index<_filterOutput.getNBpixels(); ++index)
        {
            //First line: R G R G
            _colorSampling[index] = index+((index/_filterOutput.getNBcolumns())%2)*_filterOutput.getNBpixels()+((index%_filterOutput.getNBcolumns())%2)*_filterOutput.getNBpixels();
            //First line: G R G R
            //_colorSampling[index] = 3*index+((index/_filterOutput.getNBcolumns())%2)+((index%_filterOutput.getNBcolumns()+1)%2);
        }
        _pR=_pB=0.25;
        _pG=0.5;
        break;
    default:
#ifdef RETINACOLORDEBUG
        std::cerr<<"RetinaColor::No or wrong color sampling method, skeeping"<<std::endl;
#endif
        return;
        break;//.. not useful, yes

    }
    // feeling the mosaic buffer:
    _RGBmosaic=0;
    for (unsigned int index=0 ; index<_filterOutput.getNBpixels(); ++index)
        // the RGB _RGBmosaic buffer contains 1 where the pixel corresponds to a sampled color
        _RGBmosaic[_colorSampling[index]]=1.0;

    // computing photoreceptors local density
    _spatiotemporalLPfilter(&_RGBmosaic[0], &_colorLocalDensity[0]);
    _spatiotemporalLPfilter(&_RGBmosaic[0]+_filterOutput.getNBpixels(), &_colorLocalDensity[0]+_filterOutput.getNBpixels());
    _spatiotemporalLPfilter(&_RGBmosaic[0]+_filterOutput.getDoubleNBpixels(), &_colorLocalDensity[0]+_filterOutput.getDoubleNBpixels());
    unsigned int maxNBpixels=3*_filterOutput.getNBpixels();
242
    float *colorLocalDensityPTR=&_colorLocalDensity[0];
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    for (unsigned int i=0;i<maxNBpixels;++i, ++colorLocalDensityPTR)
        *colorLocalDensityPTR=1.f/ *colorLocalDensityPTR;

#ifdef RETINACOLORDEBUG
    std::cout<<"INIT    _colorLocalDensity max, min: "<<_colorLocalDensity.max()<<", "<<_colorLocalDensity.min()<<std::endl;
#endif
    // end of the init step
    _objectInit=true;
}

// public functions

void RetinaColor::runColorDemultiplexing(const std::valarray<float> &multiplexedColorFrame, const bool adaptiveFiltering, const float maxInputValue)
{
    // demultiplex the grey frame to RGB frame
    // -> first set demultiplexed frame to 0
    _demultiplexedTempBuffer=0;
    // -> demultiplex process
261 262
    unsigned int *colorSamplingPRT=&_colorSampling[0];
    const float *multiplexedColorFramePtr=get_data(multiplexedColorFrame);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    for (unsigned int indexa=0; indexa<_filterOutput.getNBpixels() ; ++indexa)
        _demultiplexedTempBuffer[*(colorSamplingPRT++)]=*(multiplexedColorFramePtr++);

    // interpolate the demultiplexed frame depending on the color sampling method
    if (!adaptiveFiltering)
        _interpolateImageDemultiplexedImage(&_demultiplexedTempBuffer[0]);

    // low pass filtering the demultiplexed frame
    _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0], &_chrominance[0]);
    _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_chrominance[0]+_filterOutput.getNBpixels());
    _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_chrominance[0]+_filterOutput.getDoubleNBpixels());

    /*if (_samplingMethod=BAYER)
    {
        _applyRIFfilter(_chrominance, _chrominance);
        _applyRIFfilter(_chrominance+_filterOutput.getNBpixels(), _chrominance+_filterOutput.getNBpixels());
        _applyRIFfilter(_chrominance+_filterOutput.getDoubleNBpixels(), _chrominance+_filterOutput.getDoubleNBpixels());
    }*/

    // normalize by the photoreceptors local density and retrieve the local luminance
283 284 285
    float *chrominancePTR= &_chrominance[0];
    float *colorLocalDensityPTR= &_colorLocalDensity[0];
    float *luminance= &(*_luminance)[0];
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    if (!adaptiveFiltering)// compute the gradient on the luminance
    {
        if (_samplingMethod==RETINA_COLOR_RANDOM)
            for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance)
            {
                // normalize by photoreceptors density
                float Cr=*(chrominancePTR)*_colorLocalDensity[indexc];
                float Cg=*(chrominancePTR+_filterOutput.getNBpixels())*_colorLocalDensity[indexc+_filterOutput.getNBpixels()];
                float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels())*_colorLocalDensity[indexc+_filterOutput.getDoubleNBpixels()];
                *luminance=(Cr+Cg+Cb)*_pG;
                *(chrominancePTR)=Cr-*luminance;
                *(chrominancePTR+_filterOutput.getNBpixels())=Cg-*luminance;
                *(chrominancePTR+_filterOutput.getDoubleNBpixels())=Cb-*luminance;
            }
        else
            for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance)
            {
                float Cr=*(chrominancePTR);
                float Cg=*(chrominancePTR+_filterOutput.getNBpixels());
                float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels());
                *luminance=_pR*Cr+_pG*Cg+_pB*Cb;
                *(chrominancePTR)=Cr-*luminance;
                *(chrominancePTR+_filterOutput.getNBpixels())=Cg-*luminance;
                *(chrominancePTR+_filterOutput.getDoubleNBpixels())=Cb-*luminance;
            }

        // in order to get the color image, each colored map needs to be added the luminance
        // -> to do so, compute:  multiplexedColorFrame - remultiplexed chrominances
        runColorMultiplexing(_chrominance, _tempMultiplexedFrame);
        //lum = 1/3((f*(ImR))/(f*mR) + (f*(ImG))/(f*mG) + (f*(ImB))/(f*mB));
        float *luminancePTR= &(*_luminance)[0];
        chrominancePTR= &_chrominance[0];
        float *demultiplexedColorFramePTR= &_demultiplexedColorFrame[0];
        for (unsigned int indexp=0; indexp<_filterOutput.getNBpixels() ; ++indexp, ++luminancePTR, ++chrominancePTR, ++demultiplexedColorFramePTR)
        {
            *luminancePTR=(multiplexedColorFrame[indexp]-_tempMultiplexedFrame[indexp]);
            *(demultiplexedColorFramePTR)=*(chrominancePTR)+*luminancePTR;
            *(demultiplexedColorFramePTR+_filterOutput.getNBpixels())=*(chrominancePTR+_filterOutput.getNBpixels())+*luminancePTR;
            *(demultiplexedColorFramePTR+_filterOutput.getDoubleNBpixels())=*(chrominancePTR+_filterOutput.getDoubleNBpixels())+*luminancePTR;
        }

    }else
    {
329
        const float *multiplexedColorFramePTR= get_data(multiplexedColorFrame);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance, ++multiplexedColorFramePTR)
        {
            // normalize by photoreceptors density
            float Cr=*(chrominancePTR)*_colorLocalDensity[indexc];
            float Cg=*(chrominancePTR+_filterOutput.getNBpixels())*_colorLocalDensity[indexc+_filterOutput.getNBpixels()];
            float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels())*_colorLocalDensity[indexc+_filterOutput.getDoubleNBpixels()];
            *luminance=(Cr+Cg+Cb)*_pG;
            _demultiplexedTempBuffer[_colorSampling[indexc]] = *multiplexedColorFramePTR - *luminance;

        }

        // compute the gradient of the luminance
#ifdef MAKE_PARALLEL // call the TemplateBuffer TBB clipping method
        cv::parallel_for_(cv::Range(2,_filterOutput.getNBrows()-2), Parallel_computeGradient(_filterOutput.getNBcolumns(), _filterOutput.getNBrows(), &(*_luminance)[0], &_imageGradient[0]));
#else
        _computeGradient(&(*_luminance)[0]);
#endif
        // adaptively filter the submosaics to get the adaptive densities, here the buffer _chrominance is used as a temp buffer
        _adaptiveSpatialLPfilter(&_RGBmosaic[0], &_chrominance[0]);
        _adaptiveSpatialLPfilter(&_RGBmosaic[0]+_filterOutput.getNBpixels(), &_chrominance[0]+_filterOutput.getNBpixels());
        _adaptiveSpatialLPfilter(&_RGBmosaic[0]+_filterOutput.getDoubleNBpixels(), &_chrominance[0]+_filterOutput.getDoubleNBpixels());

        _adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0], &_demultiplexedColorFrame[0]);
        _adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels());
        _adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getDoubleNBpixels());

/*      for (unsigned int index=0; index<_filterOutput.getNBpixels()*3 ; ++index) // cette boucle pourrait �tre supprimee en passant la densit� � la fonction de filtrage
            _demultiplexedColorFrame[index] /= _chrominance[index];*/
        _demultiplexedColorFrame/=_chrominance; // more optimal ;o)

        // compute and substract the residual luminance
        for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index)
        {
            float residu = _pR*_demultiplexedColorFrame[index] + _pG*_demultiplexedColorFrame[index+_filterOutput.getNBpixels()] + _pB*_demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()];
            _demultiplexedColorFrame[index] = _demultiplexedColorFrame[index] - residu;
            _demultiplexedColorFrame[index+_filterOutput.getNBpixels()] = _demultiplexedColorFrame[index+_filterOutput.getNBpixels()] - residu;
            _demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] = _demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] - residu;
        }

        // multiplex the obtained chrominance
        runColorMultiplexing(_demultiplexedColorFrame, _tempMultiplexedFrame);
        _demultiplexedTempBuffer=0;

        // get the luminance, et and add it to each chrominance
        for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index)
        {
            (*_luminance)[index]=multiplexedColorFrame[index]-_tempMultiplexedFrame[index];
            _demultiplexedTempBuffer[_colorSampling[index]] = _demultiplexedColorFrame[_colorSampling[index]];//multiplexedColorFrame[index] - (*_luminance)[index];
        }

        _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0], &_demultiplexedTempBuffer[0]);
        _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels());
        _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels());

        // get the luminance and add it to each chrominance
        for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index)
        {
            _demultiplexedColorFrame[index] = _demultiplexedTempBuffer[index]*_colorLocalDensity[index]+ (*_luminance)[index];
            _demultiplexedColorFrame[index+_filterOutput.getNBpixels()] = _demultiplexedTempBuffer[index+_filterOutput.getNBpixels()]*_colorLocalDensity[index+_filterOutput.getNBpixels()]+ (*_luminance)[index];
            _demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] = _demultiplexedTempBuffer[index+_filterOutput.getDoubleNBpixels()]*_colorLocalDensity[index+_filterOutput.getDoubleNBpixels()]+ (*_luminance)[index];
        }
    }

    // eliminate saturated colors by simple clipping values to the input range
    clipRGBOutput_0_maxInputValue(NULL, maxInputValue);

    /* transfert image gradient in order to check validity
    memcpy((*_luminance), _imageGradient, sizeof(float)*_filterOutput.getNBpixels());
    memcpy(_demultiplexedColorFrame, _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels());
    memcpy(_demultiplexedColorFrame+_filterOutput.getNBpixels(), _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels());
    memcpy(_demultiplexedColorFrame+2*_filterOutput.getNBpixels(), _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels());
     */

    if (_saturateColors)
    {
        TemplateBuffer<float>::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0], &_demultiplexedColorFrame[0], _filterOutput.getNBpixels());
        TemplateBuffer<float>::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels(), _filterOutput.getNBpixels());
        TemplateBuffer<float>::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels()*2, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels()*2, _filterOutput.getNBpixels());
    }
}

// color multiplexing: input frame size=_NBrows*_filterOutput.getNBcolumns()*3, multiplexedFrame output size=_NBrows*_filterOutput.getNBcolumns()
void RetinaColor::runColorMultiplexing(const std::valarray<float> &demultiplexedInputFrame, std::valarray<float> &multiplexedFrame)
{
    // multiply each color layer by its bayer mask
415 416
    unsigned int *colorSamplingPTR= &_colorSampling[0];
    float *multiplexedFramePTR= &multiplexedFrame[0];
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    for (unsigned int indexp=0; indexp<_filterOutput.getNBpixels(); ++indexp)
        *(multiplexedFramePTR++)=demultiplexedInputFrame[*(colorSamplingPTR++)];
}

void RetinaColor::normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue)
{
    //normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance);
    TemplateBuffer<float>::normalizeGrayOutput_0_maxOutputValue(&_demultiplexedColorFrame[0], 3*_filterOutput.getNBpixels(), maxOutputValue);
    //normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance+_filterOutput.getNBpixels());
    //normalizeGrayOutput_0_maxOutputValue(_demultiplexedColorFrame+_filterOutput.getNBpixels(), _filterOutput.getNBpixels(), maxOutputValue);
    //normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance+2*_filterOutput.getNBpixels());
    //normalizeGrayOutput_0_maxOutputValue(_demultiplexedColorFrame+_filterOutput.getDoubleNBpixels(), _filterOutput.getNBpixels(), maxOutputValue);
    TemplateBuffer<float>::normalizeGrayOutput_0_maxOutputValue(&(*_luminance)[0], _filterOutput.getNBpixels(), maxOutputValue);
}

/// normalize output between 0 and maxOutputValue;
void RetinaColor::clipRGBOutput_0_maxInputValue(float *inputOutputBuffer, const float maxInputValue)
{
    //std::cout<<"RetinaColor::normalizing RGB frame..."<<std::endl;
    // if outputBuffer unsassigned, the rewrite the buffer
    if (inputOutputBuffer==NULL)
        inputOutputBuffer= &_demultiplexedColorFrame[0];

#ifdef MAKE_PARALLEL // call the TemplateBuffer TBB clipping method
        cv::parallel_for_(cv::Range(0,_filterOutput.getNBpixels()*3), Parallel_clipBufferValues<float>(inputOutputBuffer, 0,  maxInputValue));
#else
443 444
    float *inputOutputBufferPTR=inputOutputBuffer;
    for (unsigned int jf = 0; jf < _filterOutput.getNBpixels()*3; ++jf, ++inputOutputBufferPTR)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    {
        if (*inputOutputBufferPTR>maxInputValue)
            *inputOutputBufferPTR=maxInputValue;
        else if (*inputOutputBufferPTR<0)
            *inputOutputBufferPTR=0;
    }
#endif
    //std::cout<<"RetinaColor::...normalizing RGB frame OK"<<std::endl;
}

void RetinaColor::_interpolateImageDemultiplexedImage(float *inputOutputBuffer)
{

    switch(_samplingMethod)
    {

    case RETINA_COLOR_RANDOM:
        return; // no need to interpolate
        break;

    case RETINA_COLOR_DIAGONAL:
        _interpolateSingleChannelImage111(inputOutputBuffer);
        break;

    case RETINA_COLOR_BAYER: // default sets bayer sampling
        _interpolateBayerRGBchannels(inputOutputBuffer);
        break;
    default:
        std::cerr<<"RetinaColor::No or wrong color sampling method, skeeping"<<std::endl;
        return;
        break;//.. not useful, yes

    }

}

void RetinaColor::_interpolateSingleChannelImage111(float *inputOutputBuffer)
{
    for (unsigned int indexr=0 ; indexr<_filterOutput.getNBrows(); ++indexr)
    {
        for (unsigned int indexc=1 ; indexc<_filterOutput.getNBcolumns()-1; ++indexc)
        {
            unsigned int index=indexc+indexr*_filterOutput.getNBcolumns();
            inputOutputBuffer[index]=(inputOutputBuffer[index-1]+inputOutputBuffer[index]+inputOutputBuffer[index+1])/3.f;
        }
    }
    for (unsigned int indexc=0 ; indexc<_filterOutput.getNBcolumns(); ++indexc)
    {
        for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; ++indexr)
        {
            unsigned int index=indexc+indexr*_filterOutput.getNBcolumns();
            inputOutputBuffer[index]=(inputOutputBuffer[index-_filterOutput.getNBcolumns()]+inputOutputBuffer[index]+inputOutputBuffer[index+_filterOutput.getNBcolumns()])/3.f;
        }
    }
}

void RetinaColor::_interpolateBayerRGBchannels(float *inputOutputBuffer)
{
    for (unsigned int indexr=0 ; indexr<_filterOutput.getNBrows()-1; indexr+=2)
    {
        for (unsigned int indexc=1 ; indexc<_filterOutput.getNBcolumns()-1; indexc+=2)
        {
            unsigned int indexR=indexc+indexr*_filterOutput.getNBcolumns();
            unsigned int indexB=_filterOutput.getDoubleNBpixels()+indexc+1+(indexr+1)*_filterOutput.getNBcolumns();
            inputOutputBuffer[indexR]=(inputOutputBuffer[indexR-1]+inputOutputBuffer[indexR+1])/2.f;
            inputOutputBuffer[indexB]=(inputOutputBuffer[indexB-1]+inputOutputBuffer[indexB+1])/2.f;
        }
    }
    for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; indexr+=2)
    {
        for (unsigned int indexc=0 ; indexc<_filterOutput.getNBcolumns(); ++indexc)
        {
            unsigned int indexR=indexc+indexr*_filterOutput.getNBcolumns();
            unsigned int indexB=_filterOutput.getDoubleNBpixels()+indexc+1+(indexr+1)*_filterOutput.getNBcolumns();
            inputOutputBuffer[indexR]=(inputOutputBuffer[indexR-_filterOutput.getNBcolumns()]+inputOutputBuffer[indexR+_filterOutput.getNBcolumns()])/2.f;
            inputOutputBuffer[indexB]=(inputOutputBuffer[indexB-_filterOutput.getNBcolumns()]+inputOutputBuffer[indexB+_filterOutput.getNBcolumns()])/2.f;

        }
    }
    for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; ++indexr)
        for (unsigned int indexc=0 ; indexc<_filterOutput.getNBcolumns(); indexc+=2)
        {
            unsigned int indexG=_filterOutput.getNBpixels()+indexc+(indexr)*_filterOutput.getNBcolumns()+indexr%2;
            inputOutputBuffer[indexG]=(inputOutputBuffer[indexG-1]+inputOutputBuffer[indexG+1]+inputOutputBuffer[indexG-_filterOutput.getNBcolumns()]+inputOutputBuffer[indexG+_filterOutput.getNBcolumns()])*0.25f;
        }
}

void RetinaColor::_applyRIFfilter(const float *sourceBuffer, float *destinationBuffer)
{
    for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; ++indexr)
    {
        for (unsigned int indexc=1 ; indexc<_filterOutput.getNBcolumns()-1; ++indexc)
        {
            unsigned int index=indexc+indexr*_filterOutput.getNBcolumns();
            _tempMultiplexedFrame[index]=(4.f*sourceBuffer[index]+sourceBuffer[index-1-_filterOutput.getNBcolumns()]+sourceBuffer[index-1+_filterOutput.getNBcolumns()]+sourceBuffer[index+1-_filterOutput.getNBcolumns()]+sourceBuffer[index+1+_filterOutput.getNBcolumns()])*0.125f;
        }
    }
    memcpy(destinationBuffer, &_tempMultiplexedFrame[0], sizeof(float)*_filterOutput.getNBpixels());
}

void RetinaColor::_getNormalizedContoursImage(const float *inputFrame, float *outputFrame)
{
    float maxValue=0.f;
    float normalisationFactor=1.f/3.f;
    for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; ++indexr)
    {
        for (unsigned int indexc=1 ; indexc<_filterOutput.getNBcolumns()-1; ++indexc)
        {
            unsigned int index=indexc+indexr*_filterOutput.getNBcolumns();
            outputFrame[index]=normalisationFactor*fabs(8.f*inputFrame[index]-inputFrame[index-1]-inputFrame[index+1]-inputFrame[index-_filterOutput.getNBcolumns()]-inputFrame[index+_filterOutput.getNBcolumns()]-inputFrame[index-1-_filterOutput.getNBcolumns()]-inputFrame[index-1+_filterOutput.getNBcolumns()]-inputFrame[index+1-_filterOutput.getNBcolumns()]-inputFrame[index+1+_filterOutput.getNBcolumns()]);
            if (outputFrame[index]>maxValue)
                maxValue=outputFrame[index];
        }
    }
    normalisationFactor=1.f/maxValue;
    // normalisation [0, 1]
    for (unsigned int indexp=1 ; indexp<_filterOutput.getNBrows()-1; ++indexp)
       outputFrame[indexp]=outputFrame[indexp]*normalisationFactor;
}

//////////////////////////////////////////////////////////
//        ADAPTIVE BASIC RETINA FILTER
//////////////////////////////////////////////////////////
// run LP filter for a new frame input and save result at a specific output adress
void RetinaColor::_adaptiveSpatialLPfilter(const float *inputFrame, float *outputFrame)
{

    /**********/
    _gain = (1-0.57f)*(1-0.57f)*(1-0.06f)*(1-0.06f);

    // launch the serie of 1D directional filters in order to compute the 2D low pass filter
    // -> horizontal filters work with the first layer of imageGradient
    _adaptiveHorizontalCausalFilter_addInput(inputFrame, outputFrame, 0, _filterOutput.getNBrows());
    _horizontalAnticausalFilter_Irregular(outputFrame, 0, _filterOutput.getNBrows(), &_imageGradient[0]);
    // -> horizontal filters work with the second layer of imageGradient
    _verticalCausalFilter_Irregular(outputFrame, 0, _filterOutput.getNBcolumns(), &_imageGradient[0]+_filterOutput.getNBpixels());
    _adaptiveVerticalAnticausalFilter_multGain(outputFrame, 0, _filterOutput.getNBcolumns());
}

//  horizontal causal filter which adds the input inside... replaces the parent _horizontalCausalFilter_Irregular_addInput by avoiding a product for each pixel
void RetinaColor::_adaptiveHorizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
{
#ifdef MAKE_PARALLEL
        cv::parallel_for_(cv::Range(IDrowStart,IDrowEnd), Parallel_adaptiveHorizontalCausalFilter_addInput(inputFrame, outputFrame, &_imageGradient[0], _filterOutput.getNBcolumns()));
#else
590 591 592
    float* outputPTR=outputFrame+IDrowStart*_filterOutput.getNBcolumns();
    const float* inputPTR=inputFrame+IDrowStart*_filterOutput.getNBcolumns();
    const float *imageGradientPTR= &_imageGradient[0]+IDrowStart*_filterOutput.getNBcolumns();
593 594
    for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
    {
595
        float result=0;
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
        for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
        {
            //std::cout<<(*imageGradientPTR)<<" ";
            result = *(inputPTR++) + (*imageGradientPTR)* result;
            *(outputPTR++) = result;
            ++imageGradientPTR;
        }
        //        std::cout<<" "<<std::endl;
    }
#endif
}

//  vertical anticausal filter which multiplies the output by _gain... replaces the parent _verticalAnticausalFilter_multGain by avoiding a product for each pixel and taking into account the second layer of the _imageGradient buffer
void RetinaColor::_adaptiveVerticalAnticausalFilter_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd)
{
#ifdef MAKE_PARALLEL
        cv::parallel_for_(cv::Range(IDcolumnStart,IDcolumnEnd), Parallel_adaptiveVerticalAnticausalFilter_multGain(outputFrame, &_imageGradient[0]+_filterOutput.getNBpixels(), _filterOutput.getNBrows(), _filterOutput.getNBcolumns(), _gain));
#else
    float* outputOffset=outputFrame+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
    float* gradOffset= &_imageGradient[0]+_filterOutput.getNBpixels()*2-_filterOutput.getNBcolumns();

    for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
    {
619 620 621
        float result=0;
        float *outputPTR=outputOffset+IDcolumn;
        float *imageGradientPTR=gradOffset+IDcolumn;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
        for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
        {
            result = *(outputPTR) + (*(imageGradientPTR)) * result;
            *(outputPTR) = _gain*result;
            outputPTR-=_filterOutput.getNBcolumns();
            imageGradientPTR-=_filterOutput.getNBcolumns();
        }
    }
#endif
}

///////////////////////////
void RetinaColor::_computeGradient(const float *luminance)
{
    for (unsigned int idLine=2;idLine<_filterOutput.getNBrows()-2;++idLine)
    {
        for (unsigned int idColumn=2;idColumn<_filterOutput.getNBcolumns()-2;++idColumn)
        {
            const unsigned int pixelIndex=idColumn+_filterOutput.getNBcolumns()*idLine;

            // horizontal and vertical local gradients
            const float verticalGrad=fabs(luminance[pixelIndex+_filterOutput.getNBcolumns()]-luminance[pixelIndex-_filterOutput.getNBcolumns()]);
            const float horizontalGrad=fabs(luminance[pixelIndex+1]-luminance[pixelIndex-1]);

            // neighborhood horizontal and vertical gradients
            const float verticalGrad_p=fabs(luminance[pixelIndex]-luminance[pixelIndex-2*_filterOutput.getNBcolumns()]);
            const float horizontalGrad_p=fabs(luminance[pixelIndex]-luminance[pixelIndex-2]);
            const float verticalGrad_n=fabs(luminance[pixelIndex+2*_filterOutput.getNBcolumns()]-luminance[pixelIndex]);
            const float horizontalGrad_n=fabs(luminance[pixelIndex+2]-luminance[pixelIndex]);

            const float horizontalGradient=0.5f*horizontalGrad+0.25f*(horizontalGrad_p+horizontalGrad_n);
            const float verticalGradient=0.5f*verticalGrad+0.25f*(verticalGrad_p+verticalGrad_n);

            // compare local gradient means and fill the appropriate filtering coefficient value that will be used in adaptative filters
            if (horizontalGradient<verticalGradient)
            {
                _imageGradient[pixelIndex+_filterOutput.getNBpixels()]=0.06f;
                _imageGradient[pixelIndex]=0.57f;
            }
            else
            {
                _imageGradient[pixelIndex+_filterOutput.getNBpixels()]=0.57f;
                _imageGradient[pixelIndex]=0.06f;
            }
        }
    }
}

bool RetinaColor::applyKrauskopfLMS2Acr1cr2Transform(std::valarray<float> &result)
{
    bool processSuccess=true;
    // basic preliminary error check
    if (result.size()!=_demultiplexedColorFrame.size())
    {
        std::cerr<<"RetinaColor::applyKrauskopfLMS2Acr1cr2Transform: input buffer does not match retina buffer size, conversion aborted"<<std::endl;
        return false;
    }

    // apply transformation
    _applyImageColorSpaceConversion(_demultiplexedColorFrame, result, _LMStoACr1Cr2);

    return processSuccess;
}

bool RetinaColor::applyLMS2LabTransform(std::valarray<float> &result)
{
    bool processSuccess=true;
    // basic preliminary error check
    if (result.size()!=_demultiplexedColorFrame.size())
    {
        std::cerr<<"RetinaColor::applyKrauskopfLMS2Acr1cr2Transform: input buffer does not match retina buffer size, conversion aborted"<<std::endl;
        return false;
    }

    // apply transformation
    _applyImageColorSpaceConversion(_demultiplexedColorFrame, result, _LMStoLab);

    return processSuccess;
}

// template function able to perform a custom color space transformation
void RetinaColor::_applyImageColorSpaceConversion(const std::valarray<float> &inputFrameBuffer, std::valarray<float> &outputFrameBuffer, const float *transformTable)
{
    // two step methods in order to allow inputFrame and outputFrame to be the same
    unsigned int nbPixels=(unsigned int)(inputFrameBuffer.size()/3), dbpixels=(unsigned int)(2*inputFrameBuffer.size()/3);

    const float *inputFrame=get_data(inputFrameBuffer);
    float *outputFrame= &outputFrameBuffer[0];

    for (unsigned int dataIndex=0; dataIndex<nbPixels;++dataIndex, ++outputFrame, ++inputFrame)
    {
        // first step, compute each new values
        float layer1 = *(inputFrame)**(transformTable+0)  +*(inputFrame+nbPixels)**(transformTable+1)  +*(inputFrame+dbpixels)**(transformTable+2);
        float layer2 = *(inputFrame)**(transformTable+3)  +*(inputFrame+nbPixels)**(transformTable+4)  +*(inputFrame+dbpixels)**(transformTable+5);
        float layer3 = *(inputFrame)**(transformTable+6)  +*(inputFrame+nbPixels)**(transformTable+7)  +*(inputFrame+dbpixels)**(transformTable+8);
        // second, affect the output
        *(outputFrame)          = layer1;
        *(outputFrame+nbPixels) = layer2;
        *(outputFrame+dbpixels) = layer3;
    }
}

}// end of namespace bioinspired
}// end of namespace cv