retinacolor.hpp 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
**  Creation - enhancement process 2007-2011
**      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
**                          License Agreement
**               For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
**               For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
**    this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
**    this list of conditions and the following disclaimer in the documentation
**    and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
**    derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/

/**
* @class RetinaColor a color multilexing/demultiplexing (demosaicing) based on a human vision inspiration. Different mosaicing strategies can be used, included random sampling !
* => please take a look at the nice and efficient demosaicing strategy introduced by B.Chaix de Lavarene, take a look at the cited paper for more mathematical details
* @brief Retina color sampling model which allows classical bayer sampling, random and potentially several other method ! Low color errors on corners !
* -> Based on the research of:
*		.Brice Chaix Lavarene (chaix@lis.inpg.fr)
*		.Jeanny Herault (herault@lis.inpg.fr)
*		.David Alleyson (david.alleyson@upmf-grenoble.fr)
*      .collaboration: alexandre benoit (benoit.alexandre.vision@gmail.com or benoit@lis.inpg.fr)
* Please cite: B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
* @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC / Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
* Creation date 2007
*/

#ifndef RETINACOLOR_HPP_
#define RETINACOLOR_HPP_

#include "basicretinafilter.hpp"

//#define __RETINACOLORDEBUG //define RETINACOLORDEBUG in order to display debug data

namespace cv
{
namespace bioinspired
{
    class RetinaColor: public BasicRetinaFilter
    {
    public:
        /**
        * @typedef which allows to select the type of photoreceptors color sampling
        */

        /**
        * constructor of the retina color processing model
        * @param NBrows: number of rows of the input image
        * @param NBcolumns: number of columns of the input image
        * @param samplingMethod: the chosen color sampling method
        */
        RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod=RETINA_COLOR_BAYER);

        /**
        * standard destructor
        */
        virtual ~RetinaColor();

        /**
        * function that clears all buffers of the object
        */
        void clearAllBuffers();

        /**
        * resize retina color filter object (resize all allocated buffers)
        * @param NBrows: the new height size
        * @param NBcolumns: the new width size
        */
        void resize(const unsigned int NBrows, const unsigned int NBcolumns);


        /**
        * color multiplexing function: a demultiplexed RGB frame of size M*N*3 is transformed into a multiplexed M*N*1 pixels frame where each pixel is either Red, or Green or Blue
        * @param inputRGBFrame: the input RGB frame to be processed
        * @return, nothing but the multiplexed frame is available by the use of the getMultiplexedFrame() function
        */
        inline void runColorMultiplexing(const std::valarray<float> &inputRGBFrame) { runColorMultiplexing(inputRGBFrame, *_multiplexedFrame); }

        /**
        * color multiplexing function: a demultipleed RGB frame of size M*N*3 is transformed into a multiplexed M*N*1 pixels frame where each pixel is either Red, or Green or Blue if using RGB images
        * @param demultiplexedInputFrame: the demultiplexed input frame to be processed of size M*N*3
        * @param multiplexedFrame: the resulting multiplexed frame
        */
        void runColorMultiplexing(const std::valarray<float> &demultiplexedInputFrame, std::valarray<float> &multiplexedFrame);

        /**
        * color demultiplexing function: a multiplexed frame of size M*N*1 pixels is transformed into a RGB demultiplexed M*N*3 pixels frame
        * @param multiplexedColorFrame: the input multiplexed frame to be processed
        * @param adaptiveFiltering: specifies if an adaptive filtering has to be perform rather than standard filtering (adaptive filtering allows a better rendering)
        * @param maxInputValue: the maximum input data value (should be 255 for 8 bits images but it can change in the case of High Dynamic Range Images (HDRI)
        * @return, nothing but the output demultiplexed frame is available by the use of the getDemultiplexedColorFrame() function, also use getLuminance() and getChrominance() in order to retreive either luminance or chrominance
        */
        void runColorDemultiplexing(const std::valarray<float> &multiplexedColorFrame, const bool adaptiveFiltering=false, const float maxInputValue=255.0);

        /**
        * activate color saturation as the final step of the color demultiplexing process
        * -> this saturation is a sigmoide function applied to each channel of the demultiplexed image.
        * @param saturateColors: boolean that activates color saturation (if true) or desactivate (if false)
        * @param colorSaturationValue: the saturation factor
        * */
        void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0) { _saturateColors=saturateColors; _colorSaturationValue=colorSaturationValue; }

        /**
        * set parameters of the low pass spatio-temporal filter used to retreive the low chrominance
        * @param beta: gain of the filter (generally set to zero)
        * @param tau: time constant of the filter (unit is frame for video processing), typically 0 when considering static processing, 1 or more if a temporal smoothing effect is required
        * @param k: spatial constant of the filter (unit is pixels), typical value is 2.5
        */
        void setChrominanceLPfilterParameters(const float beta, const float tau, const float k) { setLPfilterParameters(beta, tau, k); }

        /**
        * apply to the retina color output the Krauskopf transformation which leads to an opponent color system: output colorspace if Acr1cr2 if input of the retina was LMS color space
        * @param result: the input buffer to fill with the transformed colorspace retina output
        * @return true if process ended successfully
        */
        bool applyKrauskopfLMS2Acr1cr2Transform(std::valarray<float> &result);

        /**
        * apply to the retina color output the CIE Lab color transformation
        * @param result: the input buffer to fill with the transformed colorspace retina output
        * @return true if process ended successfully
        */
        bool applyLMS2LabTransform(std::valarray<float> &result);

        /**
        * @return the multiplexed frame result (use this after function runColorMultiplexing)
        */
        inline const std::valarray<float> &getMultiplexedFrame() const { return *_multiplexedFrame; }

        /**
        * @return the demultiplexed frame result (use this after function runColorDemultiplexing)
        */
        inline const std::valarray<float> &getDemultiplexedColorFrame() const { return _demultiplexedColorFrame; }

        /**
        * @return the luminance of the processed frame (use this after function runColorDemultiplexing)
        */
        inline const std::valarray<float> &getLuminance() const { return *_luminance; }

        /**
        * @return the chrominance of the processed frame (use this after function runColorDemultiplexing)
        */
        inline const std::valarray<float> &getChrominance() const { return _chrominance; }

        /**
        * standard 0 to 255 image clipping function appled to RGB images (of size M*N*3 pixels)
        * @param inputOutputBuffer: the image to be normalized (rewrites the input), if no parameter, then, the built in buffer reachable by getOutput() function is normalized
        * @param maxOutputValue: the maximum value allowed at the output (values superior to it would be clipped
        */
        void clipRGBOutput_0_maxInputValue(float *inputOutputBuffer, const float maxOutputValue=255.0);

        /**
        * standard 0 to 255 image normalization function appled to RGB images (of size M*N*3 pixels)
        * @param maxOutputValue: the maximum value allowed at the output (values superior to it would be clipped
        */
        void normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue=255.0);

        /**
        * return the color sampling map: a Nrows*Mcolumns image in which each pixel value is the ofsset adress which gives the adress of the sampled pixel on an Nrows*Mcolumns*3 color image ordered by layers: layer1, layer2, layer3
        */
        inline const std::valarray<unsigned int> &getSamplingMap() const { return _colorSampling; }

        /**
        * function used (to bypass processing) to manually set the color output
        * @param demultiplexedImage: the color image (luminance+chrominance) which has to be written in the object buffer
        */
        inline void setDemultiplexedColorFrame(const std::valarray<float> &demultiplexedImage) { _demultiplexedColorFrame=demultiplexedImage; }

    protected:

        // private functions
        int _samplingMethod;
        bool _saturateColors;
        float _colorSaturationValue;
        // links to parent buffers (more convienient names
        TemplateBuffer<float> *_luminance;
        std::valarray<float> *_multiplexedFrame;
        // instance buffers
        std::valarray<unsigned int> _colorSampling; // table (size (_nbRows*_nbColumns) which specifies the color of each pixel
        std::valarray<float> _RGBmosaic;
        std::valarray<float> _tempMultiplexedFrame;
        std::valarray<float> _demultiplexedTempBuffer;
        std::valarray<float> _demultiplexedColorFrame;
        std::valarray<float> _chrominance;
        std::valarray<float> _colorLocalDensity;// buffer which contains the local density of the R, G and B photoreceptors for a normalization use
        std::valarray<float> _imageGradient;

        // variables
        float _pR, _pG, _pB; // probabilities of color R, G and B
        bool _objectInit;

        // protected functions
        void _initColorSampling();
        void _interpolateImageDemultiplexedImage(float *inputOutputBuffer);
        void _interpolateSingleChannelImage111(float *inputOutputBuffer);
        void _interpolateBayerRGBchannels(float *inputOutputBuffer);
        void _applyRIFfilter(const float *sourceBuffer, float *destinationBuffer);
        void _getNormalizedContoursImage(const float *inputFrame, float *outputFrame);
        // -> special adaptive filters dedicated to low pass filtering on the chrominance (skeeps filtering on the edges)
        void _adaptiveSpatialLPfilter(const float *inputFrame,  float *outputFrame);
        void _adaptiveHorizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, const unsigned int IDrowStart, const unsigned int IDrowEnd); // TBB parallelized
        void _adaptiveVerticalAnticausalFilter_multGain(float *outputFrame, const unsigned int IDcolumnStart, const unsigned int IDcolumnEnd);
        void _computeGradient(const float *luminance);
        void _normalizeOutputs_0_maxOutputValue(void);

        // color space transform
        void _applyImageColorSpaceConversion(const std::valarray<float> &inputFrame, std::valarray<float> &outputFrame, const float *transformTable);

#ifdef MAKE_PARALLEL
        /******************************************************
        ** IF some parallelizing thread methods are available, then, main loops are parallelized using these functors
        ** ==> main idea paralellise main filters loops, then, only the most used methods are parallelized... TODO : increase the number of parallelised methods as necessary
        ** ==> functors names = Parallel_$$$ where $$$= the name of the serial method that is parallelised
        ** ==> functors constructors can differ from the parameters used with their related serial functions
        */

        /* Template :
        class Parallel_ : public cv::ParallelLoopBody
        {
        private:

        public:
        Parallel_()
        : {}

        virtual void operator()( const cv::Range& r ) const {

        }
        }:
        */
        class Parallel_adaptiveHorizontalCausalFilter_addInput: public cv::ParallelLoopBody
        {
        private:
            float *outputFrame;
            const float *inputFrame, *imageGradient;
            unsigned int nbColumns;
        public:
            Parallel_adaptiveHorizontalCausalFilter_addInput(const float *inputImg, float *bufferToProcess, const float *imageGrad, const unsigned int nbCols)
                :outputFrame(bufferToProcess), inputFrame(inputImg), imageGradient(imageGrad), nbColumns(nbCols) { }

            virtual void operator()( const Range& r ) const
            {
                register float* outputPTR=outputFrame+r.start*nbColumns;
                register const float* inputPTR=inputFrame+r.start*nbColumns;
                register const float *imageGradientPTR= imageGradient+r.start*nbColumns;
                for (int IDrow=r.start; IDrow!=r.end; ++IDrow)
                {
                    register float result=0;
                    for (unsigned int index=0; index<nbColumns; ++index)
                    {
                        result = *(inputPTR++) + (*imageGradientPTR++)* result;
                        *(outputPTR++) = result;
                    }
                }
            }
        };

        class Parallel_adaptiveVerticalAnticausalFilter_multGain: public cv::ParallelLoopBody
        {
        private:
            float *outputFrame;
            const float *imageGradient;
            unsigned int nbRows, nbColumns;
            float filterParam_gain;
        public:
            Parallel_adaptiveVerticalAnticausalFilter_multGain(float *bufferToProcess, const float *imageGrad, const unsigned int nbRws, const unsigned int nbCols, const float  gain)
                :outputFrame(bufferToProcess), imageGradient(imageGrad), nbRows(nbRws), nbColumns(nbCols), filterParam_gain(gain) { }

            virtual void operator()( const Range& r ) const {
                float* offset=outputFrame+nbColumns*nbRows-nbColumns;
                const float* gradOffset= imageGradient+nbColumns*nbRows-nbColumns;
                for (int IDcolumn=r.start; IDcolumn!=r.end; ++IDcolumn)
                {
                    register float result=0;
                    register float *outputPTR=offset+IDcolumn;
                    register const float *imageGradientPTR=gradOffset+IDcolumn;
                    for (unsigned int index=0; index<nbRows; ++index)
                    {
                        result = *(outputPTR) + *(imageGradientPTR) * result;
                        *(outputPTR) = filterParam_gain*result;
                        outputPTR-=nbColumns;
                        imageGradientPTR-=nbColumns;
                    }
                }
            }
        };

        class Parallel_computeGradient: public cv::ParallelLoopBody
        {
        private:
            float *imageGradient;
            const float *luminance;
            unsigned int nbColumns, doubleNbColumns, nbRows, nbPixels;
        public:
            Parallel_computeGradient(const unsigned int nbCols, const unsigned int nbRws, const float *lum, float *imageGrad)
            :imageGradient(imageGrad), luminance(lum), nbColumns(nbCols), doubleNbColumns(2*nbCols), nbRows(nbRws), nbPixels(nbRws*nbCols) { }

            virtual void operator()( const Range& r ) const {
                for (int idLine=r.start;idLine!=r.end;++idLine)
                {
                    for (unsigned int idColumn=2;idColumn<nbColumns-2;++idColumn)
                    {
                        const unsigned int pixelIndex=idColumn+nbColumns*idLine;

                        // horizontal and vertical local gradients
                        const float verticalGrad=fabs(luminance[pixelIndex+nbColumns]-luminance[pixelIndex-nbColumns]);
                        const float horizontalGrad=fabs(luminance[pixelIndex+1]-luminance[pixelIndex-1]);

                        // neighborhood horizontal and vertical gradients
                        const float verticalGrad_p=fabs(luminance[pixelIndex]-luminance[pixelIndex-doubleNbColumns]);
                        const float horizontalGrad_p=fabs(luminance[pixelIndex]-luminance[pixelIndex-2]);
                        const float verticalGrad_n=fabs(luminance[pixelIndex+doubleNbColumns]-luminance[pixelIndex]);
                        const float horizontalGrad_n=fabs(luminance[pixelIndex+2]-luminance[pixelIndex]);

                        const float horizontalGradient=0.5f*horizontalGrad+0.25f*(horizontalGrad_p+horizontalGrad_n);
                        const float verticalGradient=0.5f*verticalGrad+0.25f*(verticalGrad_p+verticalGrad_n);

                        // compare local gradient means and fill the appropriate filtering coefficient value that will be used in adaptative filters
                        if (horizontalGradient<verticalGradient)
                        {
                            imageGradient[pixelIndex+nbPixels]=0.06f;
                            imageGradient[pixelIndex]=0.57f;
                        }
                        else
                        {
                            imageGradient[pixelIndex+nbPixels]=0.57f;
                            imageGradient[pixelIndex]=0.06f;
                        }
                    }
                }
            }
        };

#endif
    };
}// end of namespace bioinspired
}// end of namespace cv

#endif /*RETINACOLOR_HPP_*/