euclidean_resection.cc 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
// Copyright (c) 2009 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.

#include "libmv/multiview/euclidean_resection.h"

#include <cmath>
#include <limits>

#include <Eigen/SVD>
#include <Eigen/Geometry>

#include "libmv/base/vector.h"
#include "libmv/logging/logging.h"
#include "libmv/multiview/projection.h"

namespace libmv {
namespace euclidean_resection {

typedef unsigned int uint;

bool EuclideanResection(const Mat2X &x_camera,
                        const Mat3X &X_world,
                        Mat3 *R, Vec3 *t,
                        ResectionMethod method) {
  switch (method) {
    case RESECTION_ANSAR_DANIILIDIS:
      EuclideanResectionAnsarDaniilidis(x_camera, X_world, R, t);
      break;
    case RESECTION_EPNP:
      return EuclideanResectionEPnP(x_camera, X_world, R, t);
      break;
    case RESECTION_PPNP:
      return EuclideanResectionPPnP(x_camera, X_world, R, t);
      break;
    default:
      LOG(FATAL) << "Unknown resection method.";
  }
  return false;
}

bool EuclideanResection(const Mat &x_image,
                        const Mat3X &X_world,
                        const Mat3 &K,
                        Mat3 *R, Vec3 *t,
                        ResectionMethod method) {
  CHECK(x_image.rows() == 2 || x_image.rows() == 3)
    << "Invalid size for x_image: "
    << x_image.rows() << "x" << x_image.cols();

  Mat2X x_camera;
  if (x_image.rows() == 2) {
    EuclideanToNormalizedCamera(x_image, K, &x_camera);
  } else if (x_image.rows() == 3) {
    HomogeneousToNormalizedCamera(x_image, K, &x_camera);
  }
  return EuclideanResection(x_camera, X_world, R, t, method);
}

void AbsoluteOrientation(const Mat3X &X,
                         const Mat3X &Xp,
                         Mat3 *R,
                         Vec3 *t) {
  int num_points = X.cols();
  Vec3 C  = X.rowwise().sum() / num_points;   // Centroid of X.
  Vec3 Cp = Xp.rowwise().sum() / num_points;  // Centroid of Xp.

  // Normalize the two point sets.
  Mat3X Xn(3, num_points), Xpn(3, num_points);
  for (int i = 0; i < num_points; ++i) {
    Xn.col(i)  = X.col(i) - C;
    Xpn.col(i) = Xp.col(i) - Cp;
  }

  // Construct the N matrix (pg. 635).
  double Sxx = Xn.row(0).dot(Xpn.row(0));
  double Syy = Xn.row(1).dot(Xpn.row(1));
  double Szz = Xn.row(2).dot(Xpn.row(2));
  double Sxy = Xn.row(0).dot(Xpn.row(1));
  double Syx = Xn.row(1).dot(Xpn.row(0));
  double Sxz = Xn.row(0).dot(Xpn.row(2));
  double Szx = Xn.row(2).dot(Xpn.row(0));
  double Syz = Xn.row(1).dot(Xpn.row(2));
  double Szy = Xn.row(2).dot(Xpn.row(1));

  Mat4 N;
  N << Sxx + Syy + Szz, Syz - Szy,        Szx - Sxz,        Sxy - Syx,
       Syz - Szy,       Sxx - Syy - Szz,  Sxy + Syx,        Szx + Sxz,
       Szx - Sxz,       Sxy + Syx,       -Sxx + Syy - Szz,  Syz + Szy,
       Sxy - Syx,       Szx + Sxz,        Syz + Szy,       -Sxx - Syy + Szz;

  // Find the unit quaternion q that maximizes qNq. It is the eigenvector
  // corresponding to the lagest eigenvalue.
  Vec4 q = N.jacobiSvd(Eigen::ComputeFullU).matrixU().col(0);

  // Retrieve the 3x3 rotation matrix.
  Vec4 qq = q.array() * q.array();
  double q0q1 = q(0) * q(1);
  double q0q2 = q(0) * q(2);
  double q0q3 = q(0) * q(3);
  double q1q2 = q(1) * q(2);
  double q1q3 = q(1) * q(3);
  double q2q3 = q(2) * q(3);

  (*R) << qq(0) + qq(1) - qq(2) - qq(3),
          2 * (q1q2 - q0q3),
          2 * (q1q3 + q0q2),
          2 * (q1q2+ q0q3),
          qq(0) - qq(1) + qq(2) - qq(3),
          2 * (q2q3 - q0q1),
          2 * (q1q3 - q0q2),
          2 * (q2q3 + q0q1),
          qq(0) - qq(1) - qq(2) + qq(3);

  // Fix the handedness of the R matrix.
  if (R->determinant() < 0) {
    R->row(2) = -R->row(2);
  }
  // Compute the final translation.
  *t = Cp - *R * C;
}

// Convert i and j indices of the original variables into their quadratic
// permutation single index. It follows that t_ij = t_ji.
static int IJToPointIndex(int i, int j, int num_points) {
  // Always make sure that j is bigger than i. This handles t_ij = t_ji.
  if (j < i) {
    std::swap(i, j);
  }
  int idx;
  int num_permutation_rows = num_points * (num_points - 1) / 2;

  // All t_ii's are located at the end of the t vector after all t_ij's.
  if (j == i) {
    idx = num_permutation_rows + i;
  } else {
    int offset = (num_points - i - 1) * (num_points - i) / 2;
    idx = (num_permutation_rows - offset + j - i - 1);
  }
  return idx;
};

// Convert i and j indexes of the solution for lambda to their linear indexes.
static int IJToIndex(int i, int j, int num_lambda) {
  if (j < i) {
    std::swap(i, j);
  }
  int A = num_lambda * (num_lambda + 1) / 2;
  int B = num_lambda - i;
  int C = B * (B + 1) / 2;
  int idx = A - C + j - i;
  return idx;
};

static int Sign(double value) {
  return (value < 0) ? -1 : 1;
};

// Organizes a square matrix into a single row constraint on the elements of
// Lambda to create the constraints in equation (5) in "Linear Pose Estimation
// from Points or Lines", by Ansar, A. and Daniilidis, PAMI 2003. vol. 25, no.
// 5.
static Vec MatrixToConstraint(const Mat &A,
                              int num_k_columns,
                              int num_lambda) {
  Vec C(num_k_columns);
  C.setZero();
  int idx = 0;
  for (int i = 0; i < num_lambda; ++i) {
    for (int j = i; j < num_lambda; ++j) {
      C(idx) = A(i, j);
      if (i != j) {
        C(idx) += A(j, i);
      }
      ++idx;
    }
  }
  return C;
}

// Normalizes the columns of vectors.
static void NormalizeColumnVectors(Mat3X *vectors) {
  int num_columns = vectors->cols();
  for (int i = 0; i < num_columns; ++i) {
    vectors->col(i).normalize();
  }
}

void EuclideanResectionAnsarDaniilidis(const Mat2X &x_camera,
                                       const Mat3X &X_world,
                                       Mat3 *R,
                                       Vec3 *t) {
  CHECK(x_camera.cols() == X_world.cols());
  CHECK(x_camera.cols() > 3);

  int num_points = x_camera.cols();

  // Copy the normalized camera coords into 3 vectors and normalize them so
  // that they are unit vectors from the camera center.
  Mat3X x_camera_unit(3, num_points);
  x_camera_unit.block(0, 0, 2, num_points) = x_camera;
  x_camera_unit.row(2).setOnes();
  NormalizeColumnVectors(&x_camera_unit);

  int num_m_rows = num_points * (num_points - 1) / 2;
  int num_tt_variables = num_points * (num_points + 1) / 2;
  int num_m_columns = num_tt_variables + 1;
  Mat M(num_m_columns, num_m_columns);
  M.setZero();
  Matu ij_index(num_tt_variables, 2);

  // Create the constraint equations for the t_ij variables (7) and arrange
  // them into the M matrix (8). Also store the initial (i, j) indices.
  int row = 0;
  for (int i = 0; i < num_points; ++i) {
    for (int j = i+1; j < num_points; ++j) {
      M(row, row) = -2 * x_camera_unit.col(i).dot(x_camera_unit.col(j));
      M(row, num_m_rows + i) = x_camera_unit.col(i).dot(x_camera_unit.col(i));
      M(row, num_m_rows + j) = x_camera_unit.col(j).dot(x_camera_unit.col(j));
      Vec3 Xdiff = X_world.col(i) - X_world.col(j);
      double center_to_point_distance = Xdiff.norm();
      M(row, num_m_columns - 1) =
          - center_to_point_distance * center_to_point_distance;
      ij_index(row, 0) = i;
      ij_index(row, 1) = j;
      ++row;
    }
    ij_index(i + num_m_rows, 0) = i;
    ij_index(i + num_m_rows, 1) = i;
  }

  int num_lambda = num_points + 1;  // Dimension of the null space of M.
  Mat V = M.jacobiSvd(Eigen::ComputeFullV).matrixV().block(0,
                                                           num_m_rows,
                                                           num_m_columns,
                                                           num_lambda);

  // TODO(vess): The number of constraint equations in K (num_k_rows) must be
  // (num_points + 1) * (num_points + 2)/2. This creates a performance issue
  // for more than 4 points. It is fine for 4 points at the moment with 18
  // instead of 15 equations.
  int num_k_rows = num_m_rows + num_points *
                   (num_points*(num_points-1)/2 - num_points+1);
  int num_k_columns = num_lambda * (num_lambda + 1) / 2;
  Mat K(num_k_rows, num_k_columns);
  K.setZero();

  // Construct the first part of the K matrix corresponding to (t_ii, t_jk) for
  // i != j.
  int counter_k_row = 0;
  for (int idx1 = num_m_rows; idx1 < num_tt_variables; ++idx1) {
    for (int idx2 = 0; idx2 < num_m_rows; ++idx2) {
      unsigned int i = ij_index(idx1, 0);
      unsigned int j = ij_index(idx2, 0);
      unsigned int k = ij_index(idx2, 1);

      if (i != j && i != k) {
        int idx3 = IJToPointIndex(i, j, num_points);
        int idx4 = IJToPointIndex(i, k, num_points);

        K.row(counter_k_row) =
            MatrixToConstraint(V.row(idx1).transpose() * V.row(idx2)-
                               V.row(idx3).transpose() * V.row(idx4),
                               num_k_columns,
                               num_lambda);
        ++counter_k_row;
      }
    }
  }

  // Construct the second part of the K matrix corresponding to (t_ii,t_jk) for
  // j==k.
  for (int idx1 = num_m_rows; idx1 < num_tt_variables; ++idx1) {
    for (int idx2 = idx1 + 1; idx2 < num_tt_variables; ++idx2) {
      unsigned int i = ij_index(idx1, 0);
      unsigned int j = ij_index(idx2, 0);
      unsigned int k = ij_index(idx2, 1);

      int idx3 = IJToPointIndex(i, j, num_points);
      int idx4 = IJToPointIndex(i, k, num_points);

      K.row(counter_k_row) =
          MatrixToConstraint(V.row(idx1).transpose() * V.row(idx2)-
                             V.row(idx3).transpose() * V.row(idx4),
                             num_k_columns,
                             num_lambda);
      ++counter_k_row;
    }
  }
  Vec L_sq = K.jacobiSvd(Eigen::ComputeFullV).matrixV().col(num_k_columns - 1);

  // Pivot on the largest element for numerical stability. Afterwards recover
  // the sign of the lambda solution.
  double max_L_sq_value = fabs(L_sq(IJToIndex(0, 0, num_lambda)));
  int max_L_sq_index = 1;
  for (int i = 1; i < num_lambda; ++i) {
    double abs_sq_value = fabs(L_sq(IJToIndex(i, i, num_lambda)));
    if (max_L_sq_value < abs_sq_value) {
      max_L_sq_value = abs_sq_value;
      max_L_sq_index = i;
    }
  }
  // Ensure positiveness of the largest value corresponding to lambda_ii.
  L_sq = L_sq * Sign(L_sq(IJToIndex(max_L_sq_index,
                                    max_L_sq_index,
                                    num_lambda)));

  Vec L(num_lambda);
  L(max_L_sq_index) = sqrt(L_sq(IJToIndex(max_L_sq_index,
                                          max_L_sq_index,
                                          num_lambda)));

  for (int i = 0; i < num_lambda; ++i) {
    if (i != max_L_sq_index) {
      L(i) = L_sq(IJToIndex(max_L_sq_index, i, num_lambda)) / L(max_L_sq_index);
    }
  }

  // Correct the scale using the fact that the last constraint is equal to 1.
  L = L / (V.row(num_m_columns - 1).dot(L));
  Vec X = V * L;

  // Recover the distances from the camera center to the 3D points Q.
  Vec d(num_points);
  d.setZero();
  for (int c_point = num_m_rows; c_point < num_tt_variables; ++c_point) {
    d(c_point - num_m_rows) = sqrt(X(c_point));
  }

  // Create the 3D points in the camera system.
  Mat X_cam(3, num_points);
  for (int c_point = 0; c_point < num_points; ++c_point) {
    X_cam.col(c_point) = d(c_point) * x_camera_unit.col(c_point);
  }
  // Recover the camera translation and rotation.
  AbsoluteOrientation(X_world, X_cam, R, t);
}

// Selects 4 virtual control points using mean and PCA.
static void SelectControlPoints(const Mat3X &X_world,
                                Mat *X_centered,
                                Mat34 *X_control_points) {
  size_t num_points = X_world.cols();

  // The first virtual control point, C0, is the centroid.
  Vec mean, variance;
  MeanAndVarianceAlongRows(X_world, &mean, &variance);
  X_control_points->col(0) = mean;

  // Computes PCA
  X_centered->resize(3, num_points);
  for (size_t c = 0; c < num_points; c++) {
    X_centered->col(c) = X_world.col(c) - mean;
  }
  Mat3 X_centered_sq = (*X_centered) * X_centered->transpose();
  Eigen::JacobiSVD<Mat3> X_centered_sq_svd(X_centered_sq, Eigen::ComputeFullU);
  Vec3 w = X_centered_sq_svd.singularValues();
  Mat3 u = X_centered_sq_svd.matrixU();
  for (size_t c = 0; c < 3; c++) {
    double k = sqrt(w(c) / num_points);
    X_control_points->col(c + 1) = mean + k * u.col(c);
  }
}

// Computes the barycentric coordinates for all real points
static void ComputeBarycentricCoordinates(const Mat3X &X_world_centered,
                                          const Mat34 &X_control_points,
                                          Mat4X *alphas) {
  size_t num_points = X_world_centered.cols();
  Mat3 C2;
  for (size_t c = 1; c < 4; c++) {
    C2.col(c-1) = X_control_points.col(c) - X_control_points.col(0);
  }

  Mat3 C2inv = C2.inverse();
  Mat3X a = C2inv * X_world_centered;

  alphas->resize(4, num_points);
  alphas->setZero();
  alphas->block(1, 0, 3, num_points) = a;
  for (size_t c = 0; c < num_points; c++) {
    (*alphas)(0, c) = 1.0 - alphas->col(c).sum();
  }
}

// Estimates the coordinates of all real points in the camera coordinate frame
static void ComputePointsCoordinatesInCameraFrame(
    const Mat4X &alphas,
    const Vec4 &betas,
    const Eigen::Matrix<double, 12, 12> &U,
    Mat3X *X_camera) {
  size_t num_points = alphas.cols();

  // Estimates the control points in the camera reference frame.
  Mat34 C2b; C2b.setZero();
  for (size_t cu = 0; cu < 4; cu++) {
    for (size_t c = 0; c < 4; c++) {
      C2b.col(c) += betas(cu) * U.block(11 - cu, c * 3, 1, 3).transpose();
    }
  }

  // Estimates the 3D points in the camera reference frame
  X_camera->resize(3, num_points);
  for (size_t c = 0; c < num_points; c++) {
    X_camera->col(c) = C2b * alphas.col(c);
  }

  // Check the sign of the z coordinate of the points (should be positive)
  uint num_z_neg = 0;
  for (size_t i = 0; i < X_camera->cols(); ++i) {
    if ((*X_camera)(2, i) < 0) {
      num_z_neg++;
    }
  }

  // If more than 50% of z are negative, we change the signs
  if (num_z_neg > 0.5 * X_camera->cols()) {
    C2b = -C2b;
    *X_camera = -(*X_camera);
  }
}

bool EuclideanResectionEPnP(const Mat2X &x_camera,
                            const Mat3X &X_world,
                            Mat3 *R, Vec3 *t) {
  CHECK(x_camera.cols() == X_world.cols());
  CHECK(x_camera.cols() > 3);
  size_t num_points = X_world.cols();

  // Select the control points.
  Mat34 X_control_points;
  Mat X_centered;
  SelectControlPoints(X_world, &X_centered, &X_control_points);

  // Compute the barycentric coordinates.
  Mat4X alphas(4, num_points);
  ComputeBarycentricCoordinates(X_centered, X_control_points, &alphas);

  // Estimates the M matrix with the barycentric coordinates
  Mat M(2 * num_points, 12);
  Eigen::Matrix<double, 2, 12> sub_M;
  for (size_t c = 0; c < num_points; c++) {
    double a0 = alphas(0, c);
    double a1 = alphas(1, c);
    double a2 = alphas(2, c);
    double a3 = alphas(3, c);
    double ui = x_camera(0, c);
    double vi = x_camera(1, c);
    M.block(2*c, 0, 2, 12) << a0, 0,
                              a0*(-ui), a1, 0,
                              a1*(-ui), a2, 0,
                              a2*(-ui), a3, 0,
                              a3*(-ui), 0,
                              a0, a0*(-vi), 0,
                              a1, a1*(-vi), 0,
                              a2, a2*(-vi), 0,
                              a3, a3*(-vi);
  }

  // TODO(julien): Avoid the transpose by rewriting the u2.block() calls.
  Eigen::JacobiSVD<Mat> MtMsvd(M.transpose()*M, Eigen::ComputeFullU);
  Eigen::Matrix<double, 12, 12> u2 = MtMsvd.matrixU().transpose();

  // Estimate the L matrix.
  Eigen::Matrix<double, 6, 3> dv1;
  Eigen::Matrix<double, 6, 3> dv2;
  Eigen::Matrix<double, 6, 3> dv3;
  Eigen::Matrix<double, 6, 3> dv4;

  dv1.row(0) = u2.block(11, 0, 1, 3) - u2.block(11, 3, 1, 3);
  dv1.row(1) = u2.block(11, 0, 1, 3) - u2.block(11, 6, 1, 3);
  dv1.row(2) = u2.block(11, 0, 1, 3) - u2.block(11, 9, 1, 3);
  dv1.row(3) = u2.block(11, 3, 1, 3) - u2.block(11, 6, 1, 3);
  dv1.row(4) = u2.block(11, 3, 1, 3) - u2.block(11, 9, 1, 3);
  dv1.row(5) = u2.block(11, 6, 1, 3) - u2.block(11, 9, 1, 3);
  dv2.row(0) = u2.block(10, 0, 1, 3) - u2.block(10, 3, 1, 3);
  dv2.row(1) = u2.block(10, 0, 1, 3) - u2.block(10, 6, 1, 3);
  dv2.row(2) = u2.block(10, 0, 1, 3) - u2.block(10, 9, 1, 3);
  dv2.row(3) = u2.block(10, 3, 1, 3) - u2.block(10, 6, 1, 3);
  dv2.row(4) = u2.block(10, 3, 1, 3) - u2.block(10, 9, 1, 3);
  dv2.row(5) = u2.block(10, 6, 1, 3) - u2.block(10, 9, 1, 3);
  dv3.row(0) = u2.block(9,  0, 1, 3) - u2.block(9,  3, 1, 3);
  dv3.row(1) = u2.block(9,  0, 1, 3) - u2.block(9,  6, 1, 3);
  dv3.row(2) = u2.block(9,  0, 1, 3) - u2.block(9,  9, 1, 3);
  dv3.row(3) = u2.block(9,  3, 1, 3) - u2.block(9,  6, 1, 3);
  dv3.row(4) = u2.block(9,  3, 1, 3) - u2.block(9,  9, 1, 3);
  dv3.row(5) = u2.block(9,  6, 1, 3) - u2.block(9,  9, 1, 3);
  dv4.row(0) = u2.block(8,  0, 1, 3) - u2.block(8,  3, 1, 3);
  dv4.row(1) = u2.block(8,  0, 1, 3) - u2.block(8,  6, 1, 3);
  dv4.row(2) = u2.block(8,  0, 1, 3) - u2.block(8,  9, 1, 3);
  dv4.row(3) = u2.block(8,  3, 1, 3) - u2.block(8,  6, 1, 3);
  dv4.row(4) = u2.block(8,  3, 1, 3) - u2.block(8,  9, 1, 3);
  dv4.row(5) = u2.block(8,  6, 1, 3) - u2.block(8,  9, 1, 3);

  Eigen::Matrix<double, 6, 10> L;
  for (size_t r = 0; r < 6; r++) {
    L.row(r) << dv1.row(r).dot(dv1.row(r)),
          2.0 * dv1.row(r).dot(dv2.row(r)),
                dv2.row(r).dot(dv2.row(r)),
          2.0 * dv1.row(r).dot(dv3.row(r)),
          2.0 * dv2.row(r).dot(dv3.row(r)),
                dv3.row(r).dot(dv3.row(r)),
          2.0 * dv1.row(r).dot(dv4.row(r)),
          2.0 * dv2.row(r).dot(dv4.row(r)),
          2.0 * dv3.row(r).dot(dv4.row(r)),
                dv4.row(r).dot(dv4.row(r));
  }
  Vec6 rho;
  rho << (X_control_points.col(0) - X_control_points.col(1)).squaredNorm(),
         (X_control_points.col(0) - X_control_points.col(2)).squaredNorm(),
         (X_control_points.col(0) - X_control_points.col(3)).squaredNorm(),
         (X_control_points.col(1) - X_control_points.col(2)).squaredNorm(),
         (X_control_points.col(1) - X_control_points.col(3)).squaredNorm(),
         (X_control_points.col(2) - X_control_points.col(3)).squaredNorm();

  // There are three possible solutions based on the three approximations of L
  // (betas). Below, each one is solved for then the best one is chosen.
  Mat3X X_camera;
  Mat3 K; K.setIdentity();
  vector<Mat3> Rs(3);
  vector<Vec3> ts(3);
  Vec rmse(3);

  // At one point this threshold was 1e-3, and caused no end of problems in
  // Blender by causing frames to not resect when they would have worked fine.
  // When the resect failed, the projective followup is run leading to worse
  // results, and often the dreaded "flipping" where objects get flipped
  // between frames. Instead, disable the check for now, always succeeding. The
  // ultimate check is always reprojection error anyway.
  //
  // TODO(keir): Decide if setting this to infinity, effectively disabling the
  // check, is the right approach. So far this seems the case.
   double kSuccessThreshold = std::numeric_limits<double>::max();

  // Find the first possible solution for R, t corresponding to:
  // Betas          = [b00 b01 b11 b02 b12 b22 b03 b13 b23 b33]
  // Betas_approx_1 = [b00 b01     b02         b03]
  Vec4 betas = Vec4::Zero();
  Eigen::Matrix<double, 6, 4> l_6x4;
  for (size_t r = 0; r < 6; r++) {
    l_6x4.row(r) << L(r, 0), L(r, 1), L(r, 3), L(r, 6);
  }
  Eigen::JacobiSVD<Mat> svd_of_l4(l_6x4,
                                  Eigen::ComputeFullU | Eigen::ComputeFullV);
  Vec4 b4 = svd_of_l4.solve(rho);
  if ((l_6x4 * b4).isApprox(rho, kSuccessThreshold)) {
    if (b4(0) < 0) {
      b4 = -b4;
    }
    b4(0) =  std::sqrt(b4(0));
    betas << b4(0), b4(1) / b4(0), b4(2) / b4(0), b4(3) / b4(0);
    ComputePointsCoordinatesInCameraFrame(alphas, betas, u2, &X_camera);
    AbsoluteOrientation(X_world, X_camera, &Rs[0], &ts[0]);
    rmse(0) = RootMeanSquareError(x_camera, X_world, K, Rs[0], ts[0]);
  } else {
    LOG(ERROR) << "First approximation of beta not good enough.";
    ts[0].setZero();
    rmse(0) = std::numeric_limits<double>::max();
  }

  // Find the second possible solution for R, t corresponding to:
  // Betas          = [b00 b01 b11 b02 b12 b22 b03 b13 b23 b33]
  // Betas_approx_2 = [b00 b01 b11]
  betas.setZero();
  Eigen::Matrix<double, 6, 3> l_6x3;
  l_6x3 = L.block(0, 0, 6, 3);
  Eigen::JacobiSVD<Mat> svdOfL3(l_6x3,
                                Eigen::ComputeFullU | Eigen::ComputeFullV);
  Vec3 b3 = svdOfL3.solve(rho);
  VLOG(2) << " rho = " << rho;
  VLOG(2) << " l_6x3 * b3 = " << l_6x3 * b3;
  if ((l_6x3 * b3).isApprox(rho, kSuccessThreshold)) {
    if (b3(0) < 0) {
      betas(0) = std::sqrt(-b3(0));
      betas(1) = (b3(2) < 0) ? std::sqrt(-b3(2)) : 0;
    } else {
      betas(0) = std::sqrt(b3(0));
      betas(1) = (b3(2) > 0) ? std::sqrt(b3(2)) : 0;
    }
    if (b3(1) < 0) {
      betas(0) = -betas(0);
    }
    betas(2) = 0;
    betas(3) = 0;
    ComputePointsCoordinatesInCameraFrame(alphas, betas, u2, &X_camera);
    AbsoluteOrientation(X_world, X_camera, &Rs[1], &ts[1]);
    rmse(1) = RootMeanSquareError(x_camera, X_world, K, Rs[1], ts[1]);
  } else {
    LOG(ERROR) << "Second approximation of beta not good enough.";
    ts[1].setZero();
    rmse(1) = std::numeric_limits<double>::max();
  }

  // Find the third possible solution for R, t corresponding to:
  // Betas          = [b00 b01 b11 b02 b12 b22 b03 b13 b23 b33]
  // Betas_approx_3 = [b00 b01 b11 b02 b12]
  betas.setZero();
  Eigen::Matrix<double, 6, 5> l_6x5;
  l_6x5 = L.block(0, 0, 6, 5);
  Eigen::JacobiSVD<Mat> svdOfL5(l_6x5,
                                Eigen::ComputeFullU | Eigen::ComputeFullV);
  Vec5 b5 = svdOfL5.solve(rho);
  if ((l_6x5 * b5).isApprox(rho, kSuccessThreshold)) {
    if (b5(0) < 0) {
      betas(0) = std::sqrt(-b5(0));
      if (b5(2) < 0) {
        betas(1) = std::sqrt(-b5(2));
      } else {
        b5(2) = 0;
      }
    } else {
      betas(0) = std::sqrt(b5(0));
      if (b5(2) > 0) {
        betas(1) = std::sqrt(b5(2));
      } else {
        b5(2) = 0;
      }
    }
    if (b5(1) < 0) {
      betas(0) = -betas(0);
    }
    betas(2) = b5(3) / betas(0);
    betas(3) = 0;
    ComputePointsCoordinatesInCameraFrame(alphas, betas, u2, &X_camera);
    AbsoluteOrientation(X_world, X_camera, &Rs[2], &ts[2]);
    rmse(2) = RootMeanSquareError(x_camera, X_world, K, Rs[2], ts[2]);
  } else {
    LOG(ERROR) << "Third approximation of beta not good enough.";
    ts[2].setZero();
    rmse(2) = std::numeric_limits<double>::max();
  }

  // Finally, with all three solutions, select the (R, t) with the best RMSE.
  VLOG(2) << "RMSE for solution 0: " << rmse(0);
  VLOG(2) << "RMSE for solution 1: " << rmse(1);
  VLOG(2) << "RMSE for solution 2: " << rmse(2);
  size_t n = 0;
  if (rmse(1) < rmse(0)) {
    n = 1;
  }
  if (rmse(2) < rmse(n)) {
    n = 2;
  }
  if (rmse(n) == std::numeric_limits<double>::max()) {
    LOG(ERROR) << "All three possibilities failed. Reporting failure.";
    return false;
  }

  VLOG(1) << "RMSE for best solution #" << n << ": " << rmse(n);
  *R = Rs[n];
  *t = ts[n];

  // TODO(julien): Improve the solutions with non-linear refinement.
  return true;
}

/*

 Straight from the paper:
 http://www.diegm.uniud.it/fusiello/papers/3dimpvt12-b.pdf

 function [R T] = ppnp(P,S,tol)
 % input
 % P  : matrix (nx3) image coordinates in camera reference [u v 1]
 % S  : matrix (nx3) coordinates in world reference [X Y Z]
 % tol: exit threshold
 %
 % output
 % R : matrix (3x3) rotation (world-to-camera)
 % T : vector (3x1) translation (world-to-camera)
 %
 n = size(P,1);
 Z = zeros(n);
 e = ones(n,1);
 A = eye(n)-((e*e’)./n);
 II = e./n;
 err = +Inf;
 E_old = 1000*ones(n,3);
 while err>tol
   [U,˜,V] = svd(P’*Z*A*S);
   VT = V’;
   R=U*[1 0 0; 0 1 0; 0 0 det(U*VT)]*VT;
   PR = P*R;
   c = (S-Z*PR)’*II;
   Y = S-e*c’;
   Zmindiag = diag(PR*Y’)./(sum(P.*P,2));
   Zmindiag(Zmindiag<0)=0;
   Z = diag(Zmindiag);
   E = Y-Z*PR;
   err = norm(E-E_old,’fro’);
   E_old = E;
 end
 T = -R*c;
 end

 */
// TODO(keir): Re-do all the variable names and add comments matching the paper.
// This implementation has too much of the terseness of the original. On the
// other hand, it did work on the first try.
bool EuclideanResectionPPnP(const Mat2X &x_camera,
                            const Mat3X &X_world,
                            Mat3 *R, Vec3 *t) {
  int n = x_camera.cols();
  Mat Z = Mat::Zero(n, n);
  Vec e = Vec::Ones(n);
  Mat A = Mat::Identity(n, n) - (e * e.transpose() / n);
  Vec II = e / n;

  Mat P(n, 3);
  P.col(0) = x_camera.row(0);
  P.col(1) = x_camera.row(1);
  P.col(2).setConstant(1.0);

  Mat S = X_world.transpose();

  double error = std::numeric_limits<double>::infinity();
  Mat E_old = 1000 * Mat::Ones(n, 3);

  Vec3 c;
  Mat E(n, 3);

  int iteration = 0;
  double tolerance = 1e-5;
  // TODO(keir): The limit of 100 can probably be reduced, but this will require
  // some investigation.
  while (error > tolerance && iteration < 100) {
    Mat3 tmp = P.transpose() * Z * A * S;
    Eigen::JacobiSVD<Mat3> svd(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV);
    Mat3 U = svd.matrixU();
    Mat3 VT = svd.matrixV().transpose();
    Vec3 s;
    s << 1, 1, (U * VT).determinant();
    *R = U * s.asDiagonal() * VT;
    Mat PR = P * *R;  // n x 3
    c = (S - Z*PR).transpose() * II;
    Mat Y = S - e*c.transpose();  // n x 3
    Vec Zmindiag = (PR * Y.transpose()).diagonal()
        .cwiseQuotient(P.rowwise().squaredNorm());
    for (int i = 0; i < n; ++i) {
      Zmindiag[i] = std::max(Zmindiag[i], 0.0);
    }
    Z = Zmindiag.asDiagonal();
    E = Y - Z*PR;
    error = (E - E_old).norm();
    LOG(INFO) << "PPnP error(" << (iteration++) << "): " << error;
    E_old = E;
  }
  *t = -*R*c;

  // TODO(keir): Figure out what the failure cases are. Is it too many
  // iterations? Spend some time going through the math figuring out if there
  // is some way to detect that the algorithm is going crazy, and return false.
  return true;
}


}  // namespace resection
}  // namespace libmv