fuzzy_image.cpp 5.19 KB
Newer Older
tucna's avatar
tucna committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2015, University of Ostrava, Institute for Research and Applications of Fuzzy Modeling,
// Pavel Vlasanek, all rights reserved. Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;

void ft::createKernel(InputArray A, InputArray B, OutputArray kernel, const int chn)
{
    Mat AMat = A.getMat();
    Mat BMat = B.getMat();
50
    Mat kernelOneChannel = BMat * AMat;
tucna's avatar
tucna committed
51 52 53 54 55 56 57 58 59 60
    std::vector<Mat> channels;

    for (int i = 0; i < chn; i++)
    {
        channels.push_back(kernelOneChannel);
    }

    merge(channels, kernel);
}

61
void ft::createKernel(int function, int radius, OutputArray kernel, const int chn)
tucna's avatar
tucna committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
{
    int basicFunctionWidth = 2 * radius + 1;
    Mat kernelOneChannel;
    Mat A(1, basicFunctionWidth, CV_32F, 0.0f);
    std::vector<Mat> channels;

    A.at<float>(0, radius) = 1;

    if (function == ft::LINEAR)
    {
        float a = 1.0f / radius;

        for (int i = 1; i < radius; i++)
        {
            float previous = A.at<float>(0, i - 1);
            float current =  previous + a;

            A.at<float>(0, i) = current;
            A.at<float>(0, (2 * radius) - i) = current;
        }

        mulTransposed(A, kernelOneChannel, true);
    }

    for (int i = 0; i < chn; i++)
    {
        channels.push_back(kernelOneChannel);
    }

    merge(channels, kernel);
}

94
void ft::inpaint(InputArray image, InputArray mask, OutputArray output, int radius, int function, int algorithm)
tucna's avatar
tucna committed
95 96 97 98 99 100 101
{
    if (algorithm == ft::ONE_STEP)
    {
        Mat kernel;
        ft::createKernel(function, radius, kernel, image.channels());

        Mat processingInput;
102
        image.getMat().convertTo(processingInput, CV_32F);
tucna's avatar
tucna committed
103

104
        ft::FT02D_process(image, kernel, output, mask);
tucna's avatar
tucna committed
105

106
        processingInput.copyTo(output, mask);
tucna's avatar
tucna committed
107 108 109 110 111 112 113 114
    }
    else if (algorithm == ft::MULTI_STEP)
    {
        Mat kernel;
        int state = 0;
        int currentRadius = radius;

        Mat processingInput;
115
        image.getMat().convertTo(processingInput, CV_32F);
tucna's avatar
tucna committed
116 117 118 119 120

        do
        {
            ft::createKernel(function, currentRadius, kernel, image.channels());

121
            state = ft::FT02D_iteration(image, kernel, output, mask, noArray(), true);
tucna's avatar
tucna committed
122 123 124 125 126

            currentRadius++;
        }
        while(state != 0);

127
        processingInput.copyTo(output, mask);
tucna's avatar
tucna committed
128 129 130 131 132 133 134 135 136 137
    }
    else if (algorithm == ft::ITERATIVE)
    {
        Mat kernel;
        Mat processingOutput;
        Mat maskOutput;
        int state = 0;
        int currentRadius = radius;

        Mat processingInput;
138
        image.getMat().convertTo(processingInput, CV_32F);
tucna's avatar
tucna committed
139 140

        Mat processingMask;
141
        mask.copyTo(processingMask);
tucna's avatar
tucna committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

        do
        {
            ft::createKernel(function, currentRadius, kernel, image.channels());

            Mat invMask = 1 - processingMask;

            state = ft::FT02D_iteration(processingInput, kernel, processingOutput, processingMask, maskOutput, false);

            maskOutput.copyTo(processingMask);
            processingOutput.copyTo(processingInput, invMask);

            currentRadius++;
        }
        while(state != 0);

158
        processingInput.copyTo(output);
tucna's avatar
tucna committed
159 160 161
    }
}

162
void ft::filter(InputArray image, InputArray kernel, OutputArray output)
tucna's avatar
tucna committed
163 164 165 166 167
{
    Mat mask = Mat::ones(image.size(), CV_8U);

    ft::FT02D_process(image, kernel, output, mask);
}