xobjdetect.hpp 8.52 KB
Newer Older
Vlad Shakhuro's avatar
Vlad Shakhuro committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*

By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.


                          License Agreement
               For Open Source Computer Vision Library
                       (3-clause BSD License)

Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

  * Neither the names of the copyright holders nor the names of the contributors
    may be used to endorse or promote products derived from this software
    without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.

*/

42 43 44
#ifndef __OPENCV_XOBJDETECT_XOBJDETECT_HPP__
#define __OPENCV_XOBJDETECT_XOBJDETECT_HPP__

Vlad Shakhuro's avatar
Vlad Shakhuro committed
45
#include <opencv2/core.hpp>
manuele's avatar
manuele committed
46
#include <opencv2/highgui.hpp>
Vlad Shakhuro's avatar
Vlad Shakhuro committed
47 48 49
#include <vector>
#include <string>

50 51 52
/** @defgroup xobjdetect Extended object detection
*/

Vlad Shakhuro's avatar
Vlad Shakhuro committed
53 54
namespace cv
{
55
namespace xobjdetect
Vlad Shakhuro's avatar
Vlad Shakhuro committed
56 57
{

58 59
//! @addtogroup xobjdetect
//! @{
Vlad Shakhuro's avatar
Vlad Shakhuro committed
60

61
/** @brief Compute channels for integral channel features evaluation
Vlad Shakhuro's avatar
Vlad Shakhuro committed
62

63 64 65
@param image image for which channels should be computed
@param channels output array for computed channels
 */
66
CV_EXPORTS void computeChannels(InputArray image, std::vector<Mat>& channels);
Vlad Shakhuro's avatar
Vlad Shakhuro committed
67

68 69
/** @brief Feature evaluation interface
 */
70
class CV_EXPORTS FeatureEvaluator : public Algorithm
Vlad Shakhuro's avatar
Vlad Shakhuro committed
71 72
{
public:
73 74 75 76
    /** @brief Set channels for feature evaluation

    @param channels array of channels to be set
     */
77
    virtual void setChannels(InputArrayOfArrays channels) = 0;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
78

79 80 81 82
    /** @brief Set window position to sample features with shift. By default position is (0, 0).

    @param position position to be set
     */
83
    virtual void setPosition(Size position) = 0;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
84

85 86 87 88
    /** @brief Evaluate feature value with given index for current channels and window position.

    @param feature_ind index of feature to be evaluated
     */
89
    virtual int evaluate(size_t feature_ind) const = 0;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
90

91
    /** @brief Evaluate all features for current channels and window position.
Vlad Shakhuro's avatar
Vlad Shakhuro committed
92

93 94
    @param feature_values matrix-column of evaluated feature values
     */
95
    virtual void evaluateAll(OutputArray feature_values) const = 0;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
96

97
    virtual void assertChannels() = 0;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
98 99
};

100 101 102 103 104
/** @brief Construct feature evaluator.

@param features features for evaluation
@param type feature type. Can be "icf" or "acf"
 */
105 106 107
CV_EXPORTS Ptr<FeatureEvaluator>
createFeatureEvaluator(const std::vector<std::vector<int> >& features,
                       const std::string& type);
108

109
/** @brief Generate integral features. Returns vector of features.
Vlad Shakhuro's avatar
Vlad Shakhuro committed
110

111 112 113 114 115
@param window_size size of window in which features should be evaluated
@param type feature type. Can be "icf" or "acf"
@param count number of features to generate.
@param channel_count number of feature channels
 */
116 117 118
std::vector<std::vector<int> >
generateFeatures(Size window_size, const std::string& type,
                 int count = INT_MAX, int channel_count = 10);
Vlad Shakhuro's avatar
Vlad Shakhuro committed
119

manuele's avatar
manuele committed
120 121
//sort in-place of columns of the input matrix
void sort_columns_without_copy(Mat& m, Mat indices = Mat());
Vlad Shakhuro's avatar
Vlad Shakhuro committed
122

123 124
/** @brief Parameters for WaldBoost. weak_count — number of weak learners, alpha — cascade thresholding param.
 */
Vlad Shakhuro's avatar
Vlad Shakhuro committed
125 126 127 128
struct CV_EXPORTS WaldBoostParams
{
    int weak_count;
    float alpha;
129

Vlad Shakhuro's avatar
Vlad Shakhuro committed
130
    WaldBoostParams(): weak_count(100), alpha(0.02f)
131
    {}
Vlad Shakhuro's avatar
Vlad Shakhuro committed
132 133
};

134
/** @brief WaldBoost object detector from @cite Sochman05 .
135
*/
136
class CV_EXPORTS WaldBoost : public Algorithm
Vlad Shakhuro's avatar
Vlad Shakhuro committed
137 138
{
public:
139
    /** @brief Train WaldBoost cascade for given data.
Vlad Shakhuro's avatar
Vlad Shakhuro committed
140

141 142 143 144 145 146 147
    Returns feature indices chosen for cascade. Feature enumeration starts from 0.
    @param data matrix of feature values, size M x N, one feature per row
    @param labels matrix of samples class labels, size 1 x N. Labels can be from {-1, +1}
    @param use_fast_log
     */
    virtual std::vector<int> train(Mat& data,
                                   const Mat& labels, bool use_fast_log=false) = 0;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
148

149
    /** @brief Predict objects class given object that can compute object features.
Vlad Shakhuro's avatar
Vlad Shakhuro committed
150

151 152 153
    Returns unnormed confidence value — measure of confidence that object is from class +1.
    @param feature_evaluator object that can compute features by demand
     */
154
    virtual float predict(
155
        const Ptr<FeatureEvaluator>& feature_evaluator) const = 0;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
156 157
};

158 159
/** @brief Construct WaldBoost object.
 */
160 161 162
CV_EXPORTS Ptr<WaldBoost>
createWaldBoost(const WaldBoostParams& params = WaldBoostParams());

163 164
/** @brief Params for ICFDetector training.
 */
Vlad Shakhuro's avatar
Vlad Shakhuro committed
165 166 167 168 169 170
struct CV_EXPORTS ICFDetectorParams
{
    int feature_count;
    int weak_count;
    int model_n_rows;
    int model_n_cols;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
171
    int bg_per_image;
manuele's avatar
manuele committed
172 173 174 175
    std::string features_type;
    float alpha;
    bool is_grayscale;
    bool use_fast_log;
176 177

    ICFDetectorParams(): feature_count(UINT_MAX), weak_count(100),
manuele's avatar
manuele committed
178
        model_n_rows(56), model_n_cols(56), bg_per_image(5), alpha(0.02f), is_grayscale(false), use_fast_log(false)
179
    {}
Vlad Shakhuro's avatar
Vlad Shakhuro committed
180 181
};

182
/** @brief Integral Channel Features from @cite Dollar09 .
183
*/
Vlad Shakhuro's avatar
Vlad Shakhuro committed
184 185 186
class CV_EXPORTS ICFDetector
{
public:
Vlad Shakhuro's avatar
Vlad Shakhuro committed
187

manuele's avatar
manuele committed
188
    ICFDetector(): waldboost_(), features_(), ftype_() {}
Vlad Shakhuro's avatar
Vlad Shakhuro committed
189

190
    /** @brief Train detector.
Vlad Shakhuro's avatar
Vlad Shakhuro committed
191

192 193 194 195
    @param pos_filenames path to folder with images of objects (wildcards like /my/path/\*.png are allowed)
    @param bg_filenames path to folder with background images
    @param params parameters for detector training
     */
manuele's avatar
manuele committed
196 197
    void train(const std::vector<String>& pos_filenames,
               const std::vector<String>& bg_filenames,
Vlad Shakhuro's avatar
Vlad Shakhuro committed
198 199
               ICFDetectorParams params = ICFDetectorParams());

200 201 202 203 204 205 206 207 208 209
    /** @brief Detect objects on image.
    @param image image for detection
    @param objects output array of bounding boxes
    @param scaleFactor scale between layers in detection pyramid
    @param minSize min size of objects in pixels
    @param maxSize max size of objects in pixels
    @param threshold
    @param slidingStep sliding window step
    @param values output vector with values of positive samples
     */
Vlad Shakhuro's avatar
Vlad Shakhuro committed
210
    void detect(const Mat& image, std::vector<Rect>& objects,
manuele's avatar
manuele committed
211 212
        float scaleFactor, Size minSize, Size maxSize, float threshold, int slidingStep, std::vector<float>& values);
    
213 214 215 216 217 218 219 220 221 222
    /** @brief Detect objects on image.
    @param img image for detection
    @param objects output array of bounding boxes
    @param minScaleFactor min factor by which the image will be resized
    @param maxScaleFactor max factor by which the image will be resized
    @param factorStep scaling factor is incremented each pyramid layer according to this parameter
    @param threshold
    @param slidingStep sliding window step
    @param values output vector with values of positive samples
     */
manuele's avatar
manuele committed
223
    void detect(const Mat& img, std::vector<Rect>& objects, float minScaleFactor, float maxScaleFactor, float factorStep, float threshold, int slidingStep, std::vector<float>& values);
Vlad Shakhuro's avatar
Vlad Shakhuro committed
224

225 226 227
    /** @brief Write detector to FileStorage.
    @param fs FileStorage for output
     */
Vlad Shakhuro's avatar
Vlad Shakhuro committed
228 229
    void write(FileStorage &fs) const;

230 231 232
    /** @brief Write ICFDetector to FileNode
    @param node FileNode for reading
     */
Vlad Shakhuro's avatar
Vlad Shakhuro committed
233 234 235 236
    void read(const FileNode &node);

private:
    Ptr<WaldBoost> waldboost_;
237
    std::vector<std::vector<int> > features_;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
238 239
    int model_n_rows_;
    int model_n_cols_;
manuele's avatar
manuele committed
240
    std::string ftype_;
Vlad Shakhuro's avatar
Vlad Shakhuro committed
241 242
};

Vlad Shakhuro's avatar
Vlad Shakhuro committed
243 244 245 246 247
CV_EXPORTS void write(FileStorage& fs, String&, const ICFDetector& detector);

CV_EXPORTS void read(const FileNode& node, ICFDetector& d,
    const ICFDetector& default_value = ICFDetector());

248 249
//! @}

250
} /* namespace xobjdetect */
Vlad Shakhuro's avatar
Vlad Shakhuro committed
251 252
} /* namespace cv */

253
#endif /* __OPENCV_XOBJDETECT_XOBJDETECT_HPP__ */