stardetector.cpp 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

namespace cv
{
namespace xfeatures2d
{

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/*!
 The "Star" Detector.

 The class implements the keypoint detector introduced by K. Konolige.
 */
class StarDetectorImpl : public StarDetector
{
public:
    //! the full constructor
    StarDetectorImpl(int _maxSize=45, int _responseThreshold=30,
                         int _lineThresholdProjected=10,
                         int _lineThresholdBinarized=8,
                         int _suppressNonmaxSize=5);

63
    void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) CV_OVERRIDE;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

protected:
    int maxSize;
    int responseThreshold;
    int lineThresholdProjected;
    int lineThresholdBinarized;
    int suppressNonmaxSize;
};

Ptr<StarDetector> StarDetector::create(int _maxSize,
                                       int _responseThreshold,
                                       int _lineThresholdProjected,
                                       int _lineThresholdBinarized,
                                       int _suppressNonmaxSize)
{
    return makePtr<StarDetectorImpl>(_maxSize, _responseThreshold,
                                     _lineThresholdProjected,
                                     _lineThresholdBinarized,
                                     _suppressNonmaxSize);
}


86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
template <typename inMatType, typename outMatType> static void
computeIntegralImages( const Mat& matI, Mat& matS, Mat& matT, Mat& _FT,
                       int iiType )
{
    int x, y, rows = matI.rows, cols = matI.cols;

    matS.create(rows + 1, cols + 1, iiType );
    matT.create(rows + 1, cols + 1, iiType );
    _FT.create(rows + 1, cols + 1, iiType );

    const inMatType* I = matI.ptr<inMatType>();

    outMatType *S = matS.ptr<outMatType>();
    outMatType *T = matT.ptr<outMatType>();
    outMatType *FT = _FT.ptr<outMatType>();

    int istep = (int)(matI.step/matI.elemSize());
    int step = (int)(matS.step/matS.elemSize());

    for( x = 0; x <= cols; x++ )
        S[x] = T[x] = FT[x] = 0;

    S += step; T += step; FT += step;
    S[0] = T[0] = 0;
    FT[0] = I[0];
    for( x = 1; x < cols; x++ )
    {
        S[x] = S[x-1] + I[x-1];
        T[x] = I[x-1];
        FT[x] = I[x] + I[x-1];
    }
    S[cols] = S[cols-1] + I[cols-1];
    T[cols] = FT[cols] = I[cols-1];

    for( y = 2; y <= rows; y++ )
    {
        I += istep, S += step, T += step, FT += step;

        S[0] = S[-step]; S[1] = S[-step+1] + I[0];
        T[0] = T[-step + 1];
        T[1] = FT[0] = T[-step + 2] + I[-istep] + I[0];
        FT[1] = FT[-step + 2] + I[-istep] + I[1] + I[0];

        for( x = 2; x < cols; x++ )
        {
            S[x] = S[x - 1] + S[-step + x] - S[-step + x - 1] + I[x - 1];
            T[x] = T[-step + x - 1] + T[-step + x + 1] - T[-step*2 + x] + I[-istep + x - 1] + I[x - 1];
            FT[x] = FT[-step + x - 1] + FT[-step + x + 1] - FT[-step*2 + x] + I[x] + I[x-1];
        }

        S[cols] = S[cols - 1] + S[-step + cols] - S[-step + cols - 1] + I[cols - 1];
        T[cols] = FT[cols] = T[-step + cols - 1] + I[-istep + cols - 1] + I[cols - 1];
    }
}

template <typename iiMatType> static int
StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes,
                              int maxSize, int iiType )
{
    const int MAX_PATTERN = 17;
    static const int sizes0[] = {1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128, -1};
147 148 149
    static const int pairs[12][2] = {{1, 0}, {3, 1}, {4, 2}, {5, 3}, {7, 4}, {8, 5}, {9, 6},
                                     {11, 8}, {13, 10}, {14, 11}, {15, 12}, {16, 14}};
    const int MAX_PAIR = sizeof(pairs)/sizeof(pairs[0]);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    float invSizes[MAX_PATTERN][2];
    int sizes1[MAX_PATTERN];

#if CV_SSE2
    __m128 invSizes4[MAX_PATTERN][2];
    __m128 sizes1_4[MAX_PATTERN];
    union { int i; float f; } absmask;
    absmask.i = 0x7fffffff;
    volatile bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2) && iiType == CV_32S;
#endif

    struct StarFeature
    {
        int area;
        iiMatType* p[8];
    };

    StarFeature f[MAX_PATTERN];

    Mat sum, tilted, flatTilted;
    int y, rows = img.rows, cols = img.cols;
    int border, npatterns=0, maxIdx=0;

    responses.create( img.size(), CV_32F );
    sizes.create( img.size(), CV_16S );

176
    while( npatterns < MAX_PAIR && !
177 178 179 180 181 182
          ( sizes0[pairs[npatterns][0]] >= maxSize
           || sizes0[pairs[npatterns+1][0]] + sizes0[pairs[npatterns+1][0]]/2 >= std::min(rows, cols) ) )
    {
        ++npatterns;
    }

183 184
    if (npatterns-1 < MAX_PAIR)
        ++npatterns;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    maxIdx = pairs[npatterns-1][0];

    // Create the integral image appropriate for our type & usage
    if ( img.type() == CV_8U )
        computeIntegralImages<uchar, iiMatType>( img, sum, tilted, flatTilted, iiType );
    else if ( img.type() == CV_8S )
        computeIntegralImages<char, iiMatType>( img, sum, tilted, flatTilted, iiType );
    else if ( img.type() == CV_16U )
        computeIntegralImages<ushort, iiMatType>( img, sum, tilted, flatTilted, iiType );
    else if ( img.type() == CV_16S )
        computeIntegralImages<short, iiMatType>( img, sum, tilted, flatTilted, iiType );
    else
        CV_Error( Error::StsUnsupportedFormat, "" );

    int step = (int)(sum.step/sum.elemSize());

    for(int i = 0; i <= maxIdx; i++ )
    {
        int ur_size = sizes0[i], t_size = sizes0[i] + sizes0[i]/2;
        int ur_area = (2*ur_size + 1)*(2*ur_size + 1);
        int t_area = t_size*t_size + (t_size + 1)*(t_size + 1);

        f[i].p[0] = sum.ptr<iiMatType>() + (ur_size + 1)*step + ur_size + 1;
        f[i].p[1] = sum.ptr<iiMatType>() - ur_size*step + ur_size + 1;
        f[i].p[2] = sum.ptr<iiMatType>() + (ur_size + 1)*step - ur_size;
        f[i].p[3] = sum.ptr<iiMatType>() - ur_size*step - ur_size;

        f[i].p[4] = tilted.ptr<iiMatType>() + (t_size + 1)*step + 1;
        f[i].p[5] = flatTilted.ptr<iiMatType>() - t_size;
        f[i].p[6] = flatTilted.ptr<iiMatType>() + t_size + 1;
        f[i].p[7] = tilted.ptr<iiMatType>() - t_size*step + 1;

        f[i].area = ur_area + t_area;
        sizes1[i] = sizes0[i];
    }
    // negate end points of the size range
    // for a faster rejection of very small or very large features in non-maxima suppression.
    sizes1[0] = -sizes1[0];
    sizes1[1] = -sizes1[1];
    sizes1[maxIdx] = -sizes1[maxIdx];
    border = sizes0[maxIdx] + sizes0[maxIdx]/2;

    for(int i = 0; i < npatterns; i++ )
    {
        int innerArea = f[pairs[i][1]].area;
        int outerArea = f[pairs[i][0]].area - innerArea;
        invSizes[i][0] = 1.f/outerArea;
        invSizes[i][1] = 1.f/innerArea;
    }

#if CV_SSE2
    if( useSIMD )
    {
        for(int i = 0; i < npatterns; i++ )
        {
            _mm_store_ps((float*)&invSizes4[i][0], _mm_set1_ps(invSizes[i][0]));
            _mm_store_ps((float*)&invSizes4[i][1], _mm_set1_ps(invSizes[i][1]));
        }

        for(int i = 0; i <= maxIdx; i++ )
            _mm_store_ps((float*)&sizes1_4[i], _mm_set1_ps((float)sizes1[i]));
    }
#endif

    for( y = 0; y < border; y++ )
    {
        float* r_ptr = responses.ptr<float>(y);
        float* r_ptr2 = responses.ptr<float>(rows - 1 - y);
        short* s_ptr = sizes.ptr<short>(y);
        short* s_ptr2 = sizes.ptr<short>(rows - 1 - y);

        memset( r_ptr, 0, cols*sizeof(r_ptr[0]));
        memset( r_ptr2, 0, cols*sizeof(r_ptr2[0]));
        memset( s_ptr, 0, cols*sizeof(s_ptr[0]));
        memset( s_ptr2, 0, cols*sizeof(s_ptr2[0]));
    }

    for( y = border; y < rows - border; y++ )
    {
        int x = border;
        float* r_ptr = responses.ptr<float>(y);
        short* s_ptr = sizes.ptr<short>(y);

        memset( r_ptr, 0, border*sizeof(r_ptr[0]));
        memset( s_ptr, 0, border*sizeof(s_ptr[0]));
        memset( r_ptr + cols - border, 0, border*sizeof(r_ptr[0]));
        memset( s_ptr + cols - border, 0, border*sizeof(s_ptr[0]));

#if CV_SSE2
        if( useSIMD )
        {
            __m128 absmask4 = _mm_set1_ps(absmask.f);
            for( ; x <= cols - border - 4; x += 4 )
            {
                int ofs = y*step + x;
                __m128 vals[MAX_PATTERN];
                __m128 bestResponse = _mm_setzero_ps();
                __m128 bestSize = _mm_setzero_ps();

                for(int i = 0; i <= maxIdx; i++ )
                {
                    const iiMatType** p = (const iiMatType**)&f[i].p[0];
                    __m128i r0 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[0]+ofs)),
                                               _mm_loadu_si128((const __m128i*)(p[1]+ofs)));
                    __m128i r1 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[3]+ofs)),
                                               _mm_loadu_si128((const __m128i*)(p[2]+ofs)));
                    __m128i r2 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[4]+ofs)),
                                               _mm_loadu_si128((const __m128i*)(p[5]+ofs)));
                    __m128i r3 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[7]+ofs)),
                                               _mm_loadu_si128((const __m128i*)(p[6]+ofs)));
                    r0 = _mm_add_epi32(_mm_add_epi32(r0,r1), _mm_add_epi32(r2,r3));
                    _mm_store_ps((float*)&vals[i], _mm_cvtepi32_ps(r0));
                }

                for(int i = 0; i < npatterns; i++ )
                {
                    __m128 inner_sum = vals[pairs[i][1]];
                    __m128 outer_sum = _mm_sub_ps(vals[pairs[i][0]], inner_sum);
                    __m128 response = _mm_sub_ps(_mm_mul_ps(inner_sum, invSizes4[i][1]),
                        _mm_mul_ps(outer_sum, invSizes4[i][0]));
                    __m128 swapmask = _mm_cmpgt_ps(_mm_and_ps(response,absmask4),
                        _mm_and_ps(bestResponse,absmask4));
                    bestResponse = _mm_xor_ps(bestResponse,
                        _mm_and_ps(_mm_xor_ps(response,bestResponse), swapmask));
                    bestSize = _mm_xor_ps(bestSize,
                        _mm_and_ps(_mm_xor_ps(sizes1_4[pairs[i][0]], bestSize), swapmask));
                }

                _mm_storeu_ps(r_ptr + x, bestResponse);
                _mm_storel_epi64((__m128i*)(s_ptr + x),
                    _mm_packs_epi32(_mm_cvtps_epi32(bestSize),_mm_setzero_si128()));
            }
        }
#endif
        for( ; x < cols - border; x++ )
        {
            int ofs = y*step + x;
            int vals[MAX_PATTERN];
            float bestResponse = 0;
            int bestSize = 0;

            for(int i = 0; i <= maxIdx; i++ )
            {
                const iiMatType** p = (const iiMatType**)&f[i].p[0];
                vals[i] = (int)(p[0][ofs] - p[1][ofs] - p[2][ofs] + p[3][ofs] +
                    p[4][ofs] - p[5][ofs] - p[6][ofs] + p[7][ofs]);
            }
            for(int i = 0; i < npatterns; i++ )
            {
                int inner_sum = vals[pairs[i][1]];
                int outer_sum = vals[pairs[i][0]] - inner_sum;
                float response = inner_sum*invSizes[i][1] - outer_sum*invSizes[i][0];
                if( fabs(response) > fabs(bestResponse) )
                {
                    bestResponse = response;
                    bestSize = sizes1[pairs[i][0]];
                }
            }

            r_ptr[x] = bestResponse;
            s_ptr[x] = (short)bestSize;
        }
    }

    return border;
}


static bool StarDetectorSuppressLines( const Mat& responses, const Mat& sizes, Point pt,
                                       int lineThresholdProjected, int lineThresholdBinarized )
{
    const float* r_ptr = responses.ptr<float>();
    int rstep = (int)(responses.step/sizeof(r_ptr[0]));
    const short* s_ptr = sizes.ptr<short>();
    int sstep = (int)(sizes.step/sizeof(s_ptr[0]));
    int sz = s_ptr[pt.y*sstep + pt.x];
    int x, y, delta = sz/4, radius = delta*4;
    float Lxx = 0, Lyy = 0, Lxy = 0;
    int Lxxb = 0, Lyyb = 0, Lxyb = 0;

    for( y = pt.y - radius; y <= pt.y + radius; y += delta )
        for( x = pt.x - radius; x <= pt.x + radius; x += delta )
        {
            float Lx = r_ptr[y*rstep + x + 1] - r_ptr[y*rstep + x - 1];
            float Ly = r_ptr[(y+1)*rstep + x] - r_ptr[(y-1)*rstep + x];
            Lxx += Lx*Lx; Lyy += Ly*Ly; Lxy += Lx*Ly;
        }

    if( (Lxx + Lyy)*(Lxx + Lyy) >= lineThresholdProjected*(Lxx*Lyy - Lxy*Lxy) )
        return true;

    for( y = pt.y - radius; y <= pt.y + radius; y += delta )
        for( x = pt.x - radius; x <= pt.x + radius; x += delta )
        {
            int Lxb = (s_ptr[y*sstep + x + 1] == sz) - (s_ptr[y*sstep + x - 1] == sz);
            int Lyb = (s_ptr[(y+1)*sstep + x] == sz) - (s_ptr[(y-1)*sstep + x] == sz);
            Lxxb += Lxb * Lxb; Lyyb += Lyb * Lyb; Lxyb += Lxb * Lyb;
        }

    if( (Lxxb + Lyyb)*(Lxxb + Lyyb) >= lineThresholdBinarized*(Lxxb*Lyyb - Lxyb*Lxyb) )
        return true;

    return false;
}


static void
StarDetectorSuppressNonmax( const Mat& responses, const Mat& sizes,
                            std::vector<KeyPoint>& keypoints, int border,
                            int responseThreshold,
                            int lineThresholdProjected,
                            int lineThresholdBinarized,
                            int suppressNonmaxSize )
{
    int x, y, x1, y1, delta = suppressNonmaxSize/2;
    int rows = responses.rows, cols = responses.cols;
    const float* r_ptr = responses.ptr<float>();
    int rstep = (int)(responses.step/sizeof(r_ptr[0]));
    const short* s_ptr = sizes.ptr<short>();
    int sstep = (int)(sizes.step/sizeof(s_ptr[0]));
    short featureSize = 0;

    for( y = border; y < rows - border; y += delta+1 )
        for( x = border; x < cols - border; x += delta+1 )
        {
            float maxResponse = (float)responseThreshold;
            float minResponse = (float)-responseThreshold;
            Point maxPt(-1, -1), minPt(-1, -1);
            int tileEndY = MIN(y + delta, rows - border - 1);
            int tileEndX = MIN(x + delta, cols - border - 1);

            for( y1 = y; y1 <= tileEndY; y1++ )
                for( x1 = x; x1 <= tileEndX; x1++ )
                {
                    float val = r_ptr[y1*rstep + x1];
                    if( maxResponse < val )
                    {
                        maxResponse = val;
                        maxPt = Point(x1, y1);
                    }
                    else if( minResponse > val )
                    {
                        minResponse = val;
                        minPt = Point(x1, y1);
                    }
                }

            if( maxPt.x >= 0 )
            {
                for( y1 = maxPt.y - delta; y1 <= maxPt.y + delta; y1++ )
                    for( x1 = maxPt.x - delta; x1 <= maxPt.x + delta; x1++ )
                    {
                        float val = r_ptr[y1*rstep + x1];
                        if( val >= maxResponse && (y1 != maxPt.y || x1 != maxPt.x))
                            goto skip_max;
                    }

                if( (featureSize = s_ptr[maxPt.y*sstep + maxPt.x]) >= 4 &&
                    !StarDetectorSuppressLines( responses, sizes, maxPt, lineThresholdProjected,
                                                lineThresholdBinarized ))
                {
                    KeyPoint kpt((float)maxPt.x, (float)maxPt.y, featureSize, -1, maxResponse);
                    keypoints.push_back(kpt);
                }
            }
        skip_max:
            if( minPt.x >= 0 )
            {
                for( y1 = minPt.y - delta; y1 <= minPt.y + delta; y1++ )
                    for( x1 = minPt.x - delta; x1 <= minPt.x + delta; x1++ )
                    {
                        float val = r_ptr[y1*rstep + x1];
                        if( val <= minResponse && (y1 != minPt.y || x1 != minPt.x))
                            goto skip_min;
                    }

                if( (featureSize = s_ptr[minPt.y*sstep + minPt.x]) >= 4 &&
                    !StarDetectorSuppressLines( responses, sizes, minPt,
                                               lineThresholdProjected, lineThresholdBinarized))
                {
                    KeyPoint kpt((float)minPt.x, (float)minPt.y, featureSize, -1, maxResponse);
                    keypoints.push_back(kpt);
                }
            }
        skip_min:
            ;
        }
}

474
StarDetectorImpl::StarDetectorImpl(int _maxSize, int _responseThreshold,
475 476 477 478 479 480 481 482 483 484
                           int _lineThresholdProjected,
                           int _lineThresholdBinarized,
                           int _suppressNonmaxSize)
: maxSize(_maxSize), responseThreshold(_responseThreshold),
    lineThresholdProjected(_lineThresholdProjected),
    lineThresholdBinarized(_lineThresholdBinarized),
    suppressNonmaxSize(_suppressNonmaxSize)
{}


485
void StarDetectorImpl::detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask )
486 487
{
    Mat image = _image.getMat(), mask = _mask.getMat(), grayImage = image;
488 489 490 491 492
    if( image.empty() )
    {
        keypoints.clear();
        return;
    }
493 494 495 496 497 498
    if( image.channels() > 1 ) cvtColor( image, grayImage, COLOR_BGR2GRAY );

    Mat responses, sizes;
    int border;

    // Use 32-bit integers if we won't overflow in the integral image
499 500 501
    if ((grayImage.depth() == CV_8U || grayImage.depth() == CV_8S) &&
        (int)grayImage.total() < 8388608 ) // 8388608 = 2 ^ (32 - 8(bit depth) - 1(sign bit))
        border = StarDetectorComputeResponses<int>( grayImage, responses, sizes, maxSize, CV_32S );
502
    else
503
        border = StarDetectorComputeResponses<double>( grayImage, responses, sizes, maxSize, CV_64F );
504 505 506 507

    keypoints.clear();
    if( border >= 0 )
        StarDetectorSuppressNonmax( responses, sizes, keypoints, border,
508 509 510
                                   responseThreshold, lineThresholdProjected,
                                   lineThresholdBinarized, suppressNonmaxSize );
    KeyPointsFilter::runByPixelsMask( keypoints, mask );
511 512 513 514 515
}

}
}