fundamental.cc 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
// Copyright (c) 2007, 2008 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.

#include "libmv/multiview/fundamental.h"

#if CERES_FOUND
#include "ceres/ceres.h"
#endif
#include "libmv/logging/logging.h"
#include "libmv/numeric/numeric.h"
#include "libmv/numeric/poly.h"
#include "libmv/multiview/conditioning.h"
#include "libmv/multiview/projection.h"
#include "libmv/multiview/triangulation.h"

namespace libmv {

static void EliminateRow(const Mat34 &P, int row, Mat *X) {
  X->resize(2, 4);

  int first_row = (row + 1) % 3;
  int second_row = (row + 2) % 3;

  for (int i = 0; i < 4; ++i) {
    (*X)(0, i) = P(first_row, i);
    (*X)(1, i) = P(second_row, i);
  }
}

void ProjectionsFromFundamental(const Mat3 &F, Mat34 *P1, Mat34 *P2) {
  *P1 << Mat3::Identity(), Vec3::Zero();
  Vec3 e2;
  Mat3 Ft = F.transpose();
  Nullspace(&Ft, &e2);
  *P2 << CrossProductMatrix(e2) * F, e2;
}

// Addapted from vgg_F_from_P.
void FundamentalFromProjections(const Mat34 &P1, const Mat34 &P2, Mat3 *F) {
  Mat X[3];
  Mat Y[3];
  Mat XY;

  for (int i = 0; i < 3; ++i) {
    EliminateRow(P1, i, X + i);
    EliminateRow(P2, i, Y + i);
  }

  for (int i = 0; i < 3; ++i) {
    for (int j = 0; j < 3; ++j) {
      VerticalStack(X[j], Y[i], &XY);
      (*F)(i, j) = XY.determinant();
    }
  }
}

// HZ 11.1 pag.279 (x1 = x, x2 = x')
// http://www.cs.unc.edu/~marc/tutorial/node54.html
static double EightPointSolver(const Mat &x1, const Mat &x2, Mat3 *F) {
  DCHECK_EQ(x1.rows(), 2);
  DCHECK_GE(x1.cols(), 8);
  DCHECK_EQ(x1.rows(), x2.rows());
  DCHECK_EQ(x1.cols(), x2.cols());

  int n = x1.cols();
  Mat A(n, 9);
  for (int i = 0; i < n; ++i) {
    A(i, 0) = x2(0, i) * x1(0, i);
    A(i, 1) = x2(0, i) * x1(1, i);
    A(i, 2) = x2(0, i);
    A(i, 3) = x2(1, i) * x1(0, i);
    A(i, 4) = x2(1, i) * x1(1, i);
    A(i, 5) = x2(1, i);
    A(i, 6) = x1(0, i);
    A(i, 7) = x1(1, i);
    A(i, 8) = 1;
  }

  Vec9 f;
  double smaller_singular_value = Nullspace(&A, &f);
  *F = Map<RMat3>(f.data());
  return smaller_singular_value;
}

// HZ 11.1.1 pag.280
void EnforceFundamentalRank2Constraint(Mat3 *F) {
  Eigen::JacobiSVD<Mat3> USV(*F, Eigen::ComputeFullU | Eigen::ComputeFullV);
  Vec3 d = USV.singularValues();
  d(2) = 0.0;
  *F = USV.matrixU() * d.asDiagonal() * USV.matrixV().transpose();
}

// HZ 11.2 pag.281 (x1 = x, x2 = x')
double NormalizedEightPointSolver(const Mat &x1,
                                  const Mat &x2,
                                  Mat3 *F) {
  DCHECK_EQ(x1.rows(), 2);
  DCHECK_GE(x1.cols(), 8);
  DCHECK_EQ(x1.rows(), x2.rows());
  DCHECK_EQ(x1.cols(), x2.cols());

  // Normalize the data.
  Mat3 T1, T2;
  PreconditionerFromPoints(x1, &T1);
  PreconditionerFromPoints(x2, &T2);
  Mat x1_normalized, x2_normalized;
  ApplyTransformationToPoints(x1, T1, &x1_normalized);
  ApplyTransformationToPoints(x2, T2, &x2_normalized);

  // Estimate the fundamental matrix.
  double smaller_singular_value =
      EightPointSolver(x1_normalized, x2_normalized, F);
  EnforceFundamentalRank2Constraint(F);

  // Denormalize the fundamental matrix.
  *F = T2.transpose() * (*F) * T1;

  return smaller_singular_value;
}

// Seven-point algorithm.
// http://www.cs.unc.edu/~marc/tutorial/node55.html
double FundamentalFrom7CorrespondencesLinear(const Mat &x1,
                                             const Mat &x2,
                                             std::vector<Mat3> *F) {
  DCHECK_EQ(x1.rows(), 2);
  DCHECK_EQ(x1.cols(), 7);
  DCHECK_EQ(x1.rows(), x2.rows());
  DCHECK_EQ(x2.cols(), x2.cols());

  // Build a 9 x n matrix from point matches, where each row is equivalent to
  // the equation x'T*F*x = 0 for a single correspondence pair (x', x). The
  // domain of the matrix is a 9 element vector corresponding to F. The
  // nullspace should be rank two; the two dimensions correspond to the set of
  // F matrices satisfying the epipolar geometry.
  Matrix<double, 7, 9> A;
  for (int ii = 0; ii < 7; ++ii) {
    A(ii, 0) = x1(0, ii) * x2(0, ii);  // 0 represents x coords,
    A(ii, 1) = x1(1, ii) * x2(0, ii);  // 1 represents y coords.
    A(ii, 2) = x2(0, ii);
    A(ii, 3) = x1(0, ii) * x2(1, ii);
    A(ii, 4) = x1(1, ii) * x2(1, ii);
    A(ii, 5) = x2(1, ii);
    A(ii, 6) = x1(0, ii);
    A(ii, 7) = x1(1, ii);
    A(ii, 8) = 1.0;
  }

  // Find the two F matrices in the nullspace of A.
  Vec9 f1, f2;
  double s = Nullspace2(&A, &f1, &f2);
  Mat3 F1 = Map<RMat3>(f1.data());
  Mat3 F2 = Map<RMat3>(f2.data());

  // Then, use the condition det(F) = 0 to determine F. In other words, solve
  // det(F1 + a*F2) = 0 for a.
  double a = F1(0, 0), j = F2(0, 0),
         b = F1(0, 1), k = F2(0, 1),
         c = F1(0, 2), l = F2(0, 2),
         d = F1(1, 0), m = F2(1, 0),
         e = F1(1, 1), n = F2(1, 1),
         f = F1(1, 2), o = F2(1, 2),
         g = F1(2, 0), p = F2(2, 0),
         h = F1(2, 1), q = F2(2, 1),
         i = F1(2, 2), r = F2(2, 2);

  // Run fundamental_7point_coeffs.py to get the below coefficients.
  // The coefficients are in ascending powers of alpha, i.e. P[N]*x^N.
  double P[4] = {
    a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g,
    a*e*r + a*i*n + b*f*p + b*g*o + c*d*q + c*h*m + d*h*l + e*i*j + f*g*k -
    a*f*q - a*h*o - b*d*r - b*i*m - c*e*p - c*g*n - d*i*k - e*g*l - f*h*j,
    a*n*r + b*o*p + c*m*q + d*l*q + e*j*r + f*k*p + g*k*o + h*l*m + i*j*n -
    a*o*q - b*m*r - c*n*p - d*k*r - e*l*p - f*j*q - g*l*n - h*j*o - i*k*m,
    j*n*r + k*o*p + l*m*q - j*o*q - k*m*r - l*n*p,
  };

  // Solve for the roots of P[3]*x^3 + P[2]*x^2 + P[1]*x + P[0] = 0.
  double roots[3];
  int num_roots = SolveCubicPolynomial(P, roots);

  // Build the fundamental matrix for each solution.
  for (int kk = 0; kk < num_roots; ++kk)  {
    F->push_back(F1 + roots[kk] * F2);
  }
  return s;
}

double FundamentalFromCorrespondences7Point(const Mat &x1,
                                            const Mat &x2,
                                            std::vector<Mat3> *F) {
  DCHECK_EQ(x1.rows(), 2);
  DCHECK_GE(x1.cols(), 7);
  DCHECK_EQ(x1.rows(), x2.rows());
  DCHECK_EQ(x1.cols(), x2.cols());

  // Normalize the data.
  Mat3 T1, T2;
  PreconditionerFromPoints(x1, &T1);
  PreconditionerFromPoints(x2, &T2);
  Mat x1_normalized, x2_normalized;
  ApplyTransformationToPoints(x1, T1, &x1_normalized);
  ApplyTransformationToPoints(x2, T2, &x2_normalized);

  // Estimate the fundamental matrix.
  double smaller_singular_value =
    FundamentalFrom7CorrespondencesLinear(x1_normalized, x2_normalized, &(*F));

  for (int k = 0; k < F->size(); ++k) {
    Mat3 & Fmat = (*F)[k];
    // Denormalize the fundamental matrix.
    Fmat = T2.transpose() * Fmat * T1;
  }
  return smaller_singular_value;
}

void NormalizeFundamental(const Mat3 &F, Mat3 *F_normalized) {
  *F_normalized = F / FrobeniusNorm(F);
  if ((*F_normalized)(2, 2) < 0) {
    *F_normalized *= -1;
  }
}

double SampsonDistance(const Mat &F, const Vec2 &x1, const Vec2 &x2) {
  Vec3 x(x1(0), x1(1), 1.0);
  Vec3 y(x2(0), x2(1), 1.0);

  Vec3 F_x = F * x;
  Vec3 Ft_y = F.transpose() * y;
  double y_F_x = y.dot(F_x);

  return Square(y_F_x) / (  F_x.head<2>().squaredNorm()
                          + Ft_y.head<2>().squaredNorm());
}

double SymmetricEpipolarDistance(const Mat &F, const Vec2 &x1, const Vec2 &x2) {
  Vec3 x(x1(0), x1(1), 1.0);
  Vec3 y(x2(0), x2(1), 1.0);

  Vec3 F_x = F * x;
  Vec3 Ft_y = F.transpose() * y;
  double y_F_x = y.dot(F_x);

  return Square(y_F_x) * (  1 / F_x.head<2>().squaredNorm()
                          + 1 / Ft_y.head<2>().squaredNorm());
}

// HZ 9.6 pag 257 (formula 9.12)
void EssentialFromFundamental(const Mat3 &F,
                              const Mat3 &K1,
                              const Mat3 &K2,
                              Mat3 *E) {
  *E = K2.transpose() * F * K1;
}

// HZ 9.6 pag 257 (formula 9.12)
// Or http://ai.stanford.edu/~birch/projective/node20.html
void FundamentalFromEssential(const Mat3 &E,
                              const Mat3 &K1,
                              const Mat3 &K2,
                              Mat3 *F)  {
  *F = K2.inverse().transpose() * E * K1.inverse();
}

void RelativeCameraMotion(const Mat3 &R1,
                          const Vec3 &t1,
                          const Mat3 &R2,
                          const Vec3 &t2,
                          Mat3 *R,
                          Vec3 *t) {
  *R = R2 * R1.transpose();
  *t = t2 - (*R) * t1;
}

// HZ 9.6 pag 257
void EssentialFromRt(const Mat3 &R1,
                     const Vec3 &t1,
                     const Mat3 &R2,
                     const Vec3 &t2,
                     Mat3 *E) {
  Mat3 R;
  Vec3 t;
  RelativeCameraMotion(R1, t1, R2, t2, &R, &t);
  Mat3 Tx = CrossProductMatrix(t);
  *E = Tx * R;
}

// HZ 9.6 pag 259 (Result 9.19)
void MotionFromEssential(const Mat3 &E,
                         std::vector<Mat3> *Rs,
                         std::vector<Vec3> *ts) {
  Eigen::JacobiSVD<Mat3> USV(E, Eigen::ComputeFullU | Eigen::ComputeFullV);
  Mat3 U =  USV.matrixU();
  Mat3 Vt = USV.matrixV().transpose();

  // Last column of U is undetermined since d = (a a 0).
  if (U.determinant() < 0) {
    U.col(2) *= -1;
  }
  // Last row of Vt is undetermined since d = (a a 0).
  if (Vt.determinant() < 0) {
    Vt.row(2) *= -1;
  }

  Mat3 W;
  W << 0, -1,  0,
       1,  0,  0,
       0,  0,  1;

  Mat3 U_W_Vt = U * W * Vt;
  Mat3 U_Wt_Vt = U * W.transpose() * Vt;

  Rs->resize(4);
  (*Rs)[0] = U_W_Vt;
  (*Rs)[1] = U_W_Vt;
  (*Rs)[2] = U_Wt_Vt;
  (*Rs)[3] = U_Wt_Vt;

  ts->resize(4);
  (*ts)[0] =  U.col(2);
  (*ts)[1] = -U.col(2);
  (*ts)[2] =  U.col(2);
  (*ts)[3] = -U.col(2);
}

int MotionFromEssentialChooseSolution(const std::vector<Mat3> &Rs,
                                      const std::vector<Vec3> &ts,
                                      const Mat3 &K1,
                                      const Vec2 &x1,
                                      const Mat3 &K2,
                                      const Vec2 &x2) {
  DCHECK_EQ(4, Rs.size());
  DCHECK_EQ(4, ts.size());

  Mat34 P1, P2;
  Mat3 R1;
  Vec3 t1;
  R1.setIdentity();
  t1.setZero();
  P_From_KRt(K1, R1, t1, &P1);
  for (int i = 0; i < 4; ++i) {
    const Mat3 &R2 = Rs[i];
    const Vec3 &t2 = ts[i];
    P_From_KRt(K2, R2, t2, &P2);
    Vec3 X;
    TriangulateDLT(P1, x1, P2, x2, &X);
    double d1 = Depth(R1, t1, X);
    double d2 = Depth(R2, t2, X);
    // Test if point is front to the two cameras.
    if (d1 > 0 && d2 > 0) {
      return i;
    }
  }
  return -1;
}

bool MotionFromEssentialAndCorrespondence(const Mat3 &E,
                                          const Mat3 &K1,
                                          const Vec2 &x1,
                                          const Mat3 &K2,
                                          const Vec2 &x2,
                                          Mat3 *R,
                                          Vec3 *t) {
  std::vector<Mat3> Rs;
  std::vector<Vec3> ts;
  MotionFromEssential(E, &Rs, &ts);
  int solution = MotionFromEssentialChooseSolution(Rs, ts, K1, x1, K2, x2);
  if (solution >= 0) {
    *R = Rs[solution];
    *t = ts[solution];
    return true;
  } else {
    return false;
  }
}

void FundamentalToEssential(const Mat3 &F, Mat3 *E) {
  Eigen::JacobiSVD<Mat3> svd(F, Eigen::ComputeFullU | Eigen::ComputeFullV);

  // See Hartley & Zisserman page 294, result 11.1, which shows how to get the
  // closest essential matrix to a matrix that is "almost" an essential matrix.
  double a = svd.singularValues()(0);
  double b = svd.singularValues()(1);
  double s = (a + b) / 2.0;

  LG << "Initial reconstruction's rotation is non-euclidean by "
     << (((a - b) / std::max(a, b)) * 100) << "%; singular values:"
     << svd.singularValues().transpose();

  Vec3 diag;
  diag << s, s, 0;

  *E = svd.matrixU() * diag.asDiagonal() * svd.matrixV().transpose();
}

// Default settings for fundamental estimation which should be suitable
// for a wide range of use cases.
EstimateFundamentalOptions::EstimateFundamentalOptions(void) :
    max_num_iterations(50),
    expected_average_symmetric_distance(1e-16) {
}

namespace {
// Cost functor which computes symmetric epipolar distance
// used for fundamental matrix refinement.
class FundamentalSymmetricEpipolarCostFunctor {
 public:
  FundamentalSymmetricEpipolarCostFunctor(const Vec2 &x,
                                          const Vec2 &y)
    : x_(x), y_(y) {}

  template<typename T>
  bool operator()(const T *fundamental_parameters, T *residuals) const {
    typedef Eigen::Matrix<T, 3, 3> Mat3;
    typedef Eigen::Matrix<T, 3, 1> Vec3;

    Mat3 F(fundamental_parameters);

    Vec3 x(T(x_(0)), T(x_(1)), T(1.0));
    Vec3 y(T(y_(0)), T(y_(1)), T(1.0));

    Vec3 F_x = F * x;
    Vec3 Ft_y = F.transpose() * y;
    T y_F_x = y.dot(F_x);

    residuals[0] = y_F_x * T(1) / F_x.head(2).norm();
    residuals[1] = y_F_x * T(1) / Ft_y.head(2).norm();

    return true;
  }

  const Mat x_;
  const Mat y_;
};

#if CERES_FOUND
// Termination checking callback used for fundamental estimation.
// It finished the minimization as soon as actual average of
// symmetric epipolar distance is less or equal to the expected
// average value.
class TerminationCheckingCallback : public ceres::IterationCallback {
 public:
  TerminationCheckingCallback(const Mat &x1, const Mat &x2,
                              const EstimateFundamentalOptions &options,
                              Mat3 *F)
      : options_(options), x1_(x1), x2_(x2), F_(F) {}

  virtual ceres::CallbackReturnType operator()(
      const ceres::IterationSummary& summary) {
    // If the step wasn't successful, there's nothing to do.
    if (!summary.step_is_successful) {
      return ceres::SOLVER_CONTINUE;
    }

    // Calculate average of symmetric epipolar distance.
    double average_distance = 0.0;
    for (int i = 0; i < x1_.cols(); i++) {
      average_distance = SymmetricEpipolarDistance(*F_,
                                                   x1_.col(i),
                                                   x2_.col(i));
    }
    average_distance /= x1_.cols();

    if (average_distance <= options_.expected_average_symmetric_distance) {
      return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
    }

    return ceres::SOLVER_CONTINUE;
  }

 private:
  const EstimateFundamentalOptions &options_;
  const Mat &x1_;
  const Mat &x2_;
  Mat3 *F_;
};
#endif // CERES_FOUND
}  // namespace

/* Fundamental transformation estimation. */
bool EstimateFundamentalFromCorrespondences(
    const Mat &x1,
    const Mat &x2,
    const EstimateFundamentalOptions &options,
    Mat3 *F) {
  // Step 1: Algebraic fundamental estimation.

  // Assume algebraic estiation always succeeds,
  NormalizedEightPointSolver(x1, x2, F);

#if CERES_FOUND
  LG << "Estimated matrix after algebraic estimation:\n" << *F;

  // Step 2: Refine matrix using Ceres minimizer.
  ceres::Problem problem;
  for (int i = 0; i < x1.cols(); i++) {
    FundamentalSymmetricEpipolarCostFunctor
        *fundamental_symmetric_epipolar_cost_function =
            new FundamentalSymmetricEpipolarCostFunctor(x1.col(i),
                                                        x2.col(i));

    problem.AddResidualBlock(
        new ceres::AutoDiffCostFunction<
            FundamentalSymmetricEpipolarCostFunctor,
            2,  // num_residuals
            9>(fundamental_symmetric_epipolar_cost_function),
        NULL,
        F->data());
  }

  // Configure the solve.
  ceres::Solver::Options solver_options;
  solver_options.linear_solver_type = ceres::DENSE_QR;
  solver_options.max_num_iterations = options.max_num_iterations;
  solver_options.update_state_every_iteration = true;

  // Terminate if the average symmetric distance is good enough.
  TerminationCheckingCallback callback(x1, x2, options, F);
  solver_options.callbacks.push_back(&callback);

  // Run the solve.
  ceres::Solver::Summary summary;
  ceres::Solve(solver_options, &problem, &summary);

  VLOG(1) << "Summary:\n" << summary.FullReport();

  LG << "Final refined matrix:\n" << *F;

  return summary.IsSolutionUsable();
#endif // CERES_FOUND
  return true;
}

}  // namespace libmv