rlofflow.cpp 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "rlof/rlof_localflow.h"
#include "rlof/geo_interpolation.hpp"
#include "opencv2/ximgproc.hpp"

namespace cv {
namespace optflow {

Ptr<RLOFOpticalFlowParameter> RLOFOpticalFlowParameter::create()
{
    return Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter);
}

void RLOFOpticalFlowParameter::setSolverType(SolverType val){ solverType = val;}
SolverType RLOFOpticalFlowParameter::getSolverType() const { return solverType;}

void RLOFOpticalFlowParameter::setSupportRegionType(SupportRegionType val){ supportRegionType = val;}
SupportRegionType RLOFOpticalFlowParameter::getSupportRegionType() const { return supportRegionType;}

void RLOFOpticalFlowParameter::setNormSigma0(float val){ normSigma0 = val;}
float RLOFOpticalFlowParameter::getNormSigma0() const { return normSigma0;}

void RLOFOpticalFlowParameter::setNormSigma1(float val){ normSigma1 = val;}
float RLOFOpticalFlowParameter::getNormSigma1() const { return normSigma1;}

void RLOFOpticalFlowParameter::setSmallWinSize(int val){ smallWinSize = val;}
int RLOFOpticalFlowParameter::getSmallWinSize() const { return smallWinSize;}

void RLOFOpticalFlowParameter::setLargeWinSize(int val){ largeWinSize = val;}
int RLOFOpticalFlowParameter::getLargeWinSize() const { return largeWinSize;}

void RLOFOpticalFlowParameter::setCrossSegmentationThreshold(int val){ crossSegmentationThreshold = val;}
int RLOFOpticalFlowParameter::getCrossSegmentationThreshold() const { return crossSegmentationThreshold;}

void RLOFOpticalFlowParameter::setMaxLevel(int val){ maxLevel = val;}
int RLOFOpticalFlowParameter::getMaxLevel() const { return maxLevel;}

void RLOFOpticalFlowParameter::setUseInitialFlow(bool val){ useInitialFlow = val;}
bool RLOFOpticalFlowParameter::getUseInitialFlow() const { return useInitialFlow;}

void RLOFOpticalFlowParameter::setUseIlluminationModel(bool val){ useIlluminationModel = val;}
bool RLOFOpticalFlowParameter::getUseIlluminationModel() const { return useIlluminationModel;}

void RLOFOpticalFlowParameter::setUseGlobalMotionPrior(bool val){ useGlobalMotionPrior = val;}
bool RLOFOpticalFlowParameter::getUseGlobalMotionPrior() const { return useGlobalMotionPrior;}

void RLOFOpticalFlowParameter::setMaxIteration(int val){ maxIteration = val;}
int RLOFOpticalFlowParameter::getMaxIteration() const { return maxIteration;}

void RLOFOpticalFlowParameter::setMinEigenValue(float val){ minEigenValue = val;}
float RLOFOpticalFlowParameter::getMinEigenValue() const { return minEigenValue;}

void RLOFOpticalFlowParameter::setGlobalMotionRansacThreshold(float val){ globalMotionRansacThreshold = val;}
float RLOFOpticalFlowParameter::getGlobalMotionRansacThreshold() const { return globalMotionRansacThreshold;}

class DenseOpticalFlowRLOFImpl : public DenseRLOFOpticalFlow
{
public:
    DenseOpticalFlowRLOFImpl()
        : param(Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter))
        , forwardBackwardThreshold(1.f)
        , gridStep(6, 6)
        , interp_type(InterpolationType::INTERP_GEO)
        , k(128)
        , sigma(0.05f)
        , lambda(999.f)
        , fgs_lambda(500.0f)
        , fgs_sigma(1.5f)
        , use_post_proc(true)

    {
        prevPyramid[0] = cv::Ptr<CImageBuffer>(new CImageBuffer);
        prevPyramid[1] = cv::Ptr<CImageBuffer>(new CImageBuffer);
        currPyramid[0] = cv::Ptr<CImageBuffer>(new CImageBuffer);
        currPyramid[1] = cv::Ptr<CImageBuffer>(new CImageBuffer);
    }
    virtual void setRLOFOpticalFlowParameter(Ptr<RLOFOpticalFlowParameter>  val) CV_OVERRIDE { param = val; }
    virtual Ptr<RLOFOpticalFlowParameter>  getRLOFOpticalFlowParameter() const CV_OVERRIDE { return param; }

    virtual float getForwardBackward() const CV_OVERRIDE { return forwardBackwardThreshold; }
    virtual void setForwardBackward(float val) CV_OVERRIDE { forwardBackwardThreshold = val; }

    virtual void setInterpolation(InterpolationType val) CV_OVERRIDE { interp_type = val; }
    virtual InterpolationType getInterpolation() const CV_OVERRIDE { return interp_type; }

    virtual Size getGridStep() const CV_OVERRIDE { return gridStep; }
    virtual void setGridStep(Size val) CV_OVERRIDE { gridStep = val; }

    virtual int getEPICK() const CV_OVERRIDE { return k; }
    virtual void setEPICK(int val) CV_OVERRIDE { k = val; }

    virtual float getEPICSigma() const CV_OVERRIDE { return sigma; }
    virtual void setEPICSigma(float val) CV_OVERRIDE { sigma = val; }

    virtual float getEPICLambda() const CV_OVERRIDE { return lambda; }
    virtual void setEPICLambda(float val)  CV_OVERRIDE { lambda = val; }

    virtual float getFgsLambda() const CV_OVERRIDE { return fgs_lambda; }
    virtual void setFgsLambda(float val) CV_OVERRIDE { fgs_lambda = val; }

    virtual float getFgsSigma() const CV_OVERRIDE { return fgs_sigma; }
    virtual void setFgsSigma(float val) CV_OVERRIDE { fgs_sigma = val; }

    virtual bool getUsePostProc() const CV_OVERRIDE { return use_post_proc; }
    virtual void setUsePostProc(bool val) CV_OVERRIDE { use_post_proc = val; }

    virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow) CV_OVERRIDE
    {
        CV_Assert(!I0.empty() && I0.depth() == CV_8U && (I0.channels() == 3 || I0.channels() == 1));
        CV_Assert(!I1.empty() && I1.depth() == CV_8U && (I1.channels() == 3 || I1.channels() == 1));
        CV_Assert(I0.sameSize(I1));
        if (param.empty())
            param = Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter());
        if (param->supportRegionType == SR_CROSS)
            CV_Assert( I0.channels() == 3 && I1.channels() == 3);
        CV_Assert(interp_type == InterpolationType::INTERP_EPIC || interp_type == InterpolationType::INTERP_GEO);
        // if no parameter is used use the default parameter

        Mat prevImage = I0.getMat();
        Mat currImage = I1.getMat();
        int noPoints = prevImage.cols * prevImage.rows;
        std::vector<cv::Point2f> prevPoints(noPoints);
        std::vector<cv::Point2f> currPoints, refPoints;
        noPoints = 0;
        cv::Size grid_h = gridStep / 2;
        for (int r = grid_h.height; r < prevImage.rows - grid_h.height; r += gridStep.height)
        {
            for (int c = grid_h.width; c < prevImage.cols - grid_h.width; c += gridStep.width)
            {
                prevPoints[noPoints++] = cv::Point2f(static_cast<float>(c), static_cast<float>(r));
            }
        }
        prevPoints.erase(prevPoints.begin() + noPoints, prevPoints.end());
        currPoints.resize(prevPoints.size());
        calcLocalOpticalFlow(prevImage, currImage, prevPyramid, currPyramid, prevPoints, currPoints, *(param.get()));
        flow.create(prevImage.size(), CV_32FC2);
        Mat dense_flow = flow.getMat();

        std::vector<Point2f> filtered_prevPoints;
        std::vector<Point2f> filtered_currPoints;
        if (gridStep == cv::Size(1, 1) && forwardBackwardThreshold <= 0)
        {
            for (unsigned int n = 0; n < prevPoints.size(); n++)
            {
                dense_flow.at<Point2f>(prevPoints[n]) = currPoints[n] - prevPoints[n];
            }
            return;
        }
        if (forwardBackwardThreshold > 0)
        {
            // reuse image pyramids
            calcLocalOpticalFlow(currImage, prevImage, currPyramid, prevPyramid, currPoints, refPoints, *(param.get()));

            filtered_prevPoints.resize(prevPoints.size());
            filtered_currPoints.resize(prevPoints.size());
            float sqrForwardBackwardThreshold = forwardBackwardThreshold * forwardBackwardThreshold;
            noPoints = 0;
            for (unsigned int r = 0; r < refPoints.size(); r++)
            {
                Point2f diff = refPoints[r] - prevPoints[r];
                if (diff.x * diff.x + diff.y * diff.y < sqrForwardBackwardThreshold)
                {
                    filtered_prevPoints[noPoints] = prevPoints[r];
                    filtered_currPoints[noPoints++] = currPoints[r];
                }
            }

            filtered_prevPoints.erase(filtered_prevPoints.begin() + noPoints, filtered_prevPoints.end());
            filtered_currPoints.erase(filtered_currPoints.begin() + noPoints, filtered_currPoints.end());

        }
        else
        {
            filtered_prevPoints = prevPoints;
            filtered_currPoints = currPoints;
        }

        if (interp_type == InterpolationType::INTERP_EPIC)
        {
            Ptr<ximgproc::EdgeAwareInterpolator> gd = ximgproc::createEdgeAwareInterpolator();
            gd->setK(k);
            gd->setSigma(sigma);
            gd->setLambda(lambda);
            gd->setUsePostProcessing(false);
            gd->interpolate(prevImage, filtered_prevPoints, currImage, filtered_currPoints, dense_flow);
        }
        else
        {
            Mat blurredPrevImage, blurredCurrImage;
            GaussianBlur(prevImage, blurredPrevImage, cv::Size(5, 5), -1);
            std::vector<uchar> status(filtered_currPoints.size(), 1);
            interpolate_irregular_nn_raster(filtered_prevPoints, filtered_currPoints, status, blurredPrevImage).copyTo(dense_flow);
            std::vector<Mat> vecMats;
            std::vector<Mat> vecMats2(2);
            cv::split(dense_flow, vecMats);
            cv::bilateralFilter(vecMats[0], vecMats2[0], 5, 2, 20);
            cv::bilateralFilter(vecMats[1], vecMats2[1], 5, 2, 20);
            cv::merge(vecMats2, dense_flow);
        }
        if (use_post_proc)
        {
            ximgproc::fastGlobalSmootherFilter(prevImage, flow, flow, fgs_lambda, fgs_sigma);
        }
    }

    virtual void collectGarbage() CV_OVERRIDE
    {
        prevPyramid[0].release();
        prevPyramid[1].release();
        currPyramid[0].release();
        currPyramid[1].release();
    }

protected:
    Ptr<RLOFOpticalFlowParameter> param;
    float                         forwardBackwardThreshold;
    Ptr<CImageBuffer>             prevPyramid[2];
    Ptr<CImageBuffer>             currPyramid[2];
    cv::Size                      gridStep;
    InterpolationType             interp_type;
    int                           k;
    float                         sigma;
    float                         lambda;
    float                         fgs_lambda;
    float                         fgs_sigma;
    bool                          use_post_proc;
};

Ptr<DenseRLOFOpticalFlow> DenseRLOFOpticalFlow::create(
    Ptr<RLOFOpticalFlowParameter>  rlofParam,
    float forwardBackwardThreshold,
    cv::Size gridStep,
    InterpolationType interp_type,
    int epicK,
    float epicSigma,
    float epicLambda,
    bool use_post_proc,
    float fgs_lambda,
    float fgs_sigma)
{
    Ptr<DenseRLOFOpticalFlow> algo = makePtr<DenseOpticalFlowRLOFImpl>();
    algo->setRLOFOpticalFlowParameter(rlofParam);
    algo->setForwardBackward(forwardBackwardThreshold);
    algo->setGridStep(gridStep);
    algo->setInterpolation(interp_type);
    algo->setEPICK(epicK);
    algo->setEPICSigma(epicSigma);
    algo->setEPICLambda(epicLambda);
    algo->setUsePostProc(use_post_proc);
    algo->setFgsLambda(fgs_lambda);
    algo->setFgsSigma(fgs_sigma);
    return algo;
}

class SparseRLOFOpticalFlowImpl : public SparseRLOFOpticalFlow
{
    public:
    SparseRLOFOpticalFlowImpl()
        : param(Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter))
        , forwardBackwardThreshold(1.f)
    {
        prevPyramid[0] = cv::Ptr< CImageBuffer>(new CImageBuffer);
        prevPyramid[1] = cv::Ptr< CImageBuffer>(new CImageBuffer);
        currPyramid[0] = cv::Ptr< CImageBuffer>(new CImageBuffer);
        currPyramid[1] = cv::Ptr< CImageBuffer>(new CImageBuffer);
    }
    virtual void setRLOFOpticalFlowParameter(Ptr<RLOFOpticalFlowParameter>  val) CV_OVERRIDE { param = val; }
    virtual Ptr<RLOFOpticalFlowParameter>  getRLOFOpticalFlowParameter() const CV_OVERRIDE { return param; }

    virtual float getForwardBackward()  const CV_OVERRIDE { return forwardBackwardThreshold; }
    virtual void setForwardBackward(float val) CV_OVERRIDE { forwardBackwardThreshold = val; }

    virtual void calc(InputArray prevImg, InputArray nextImg,
        InputArray prevPts, InputOutputArray nextPts,
        OutputArray status,
        OutputArray err) CV_OVERRIDE
    {
        CV_Assert(!prevImg.empty() && prevImg.depth() == CV_8U && (prevImg.channels() == 3 || prevImg.channels() == 1));
        CV_Assert(!nextImg.empty() && nextImg.depth() == CV_8U && (nextImg.channels() == 3 || nextImg.channels() == 1));
        CV_Assert(prevImg.sameSize(nextImg));

        if (param.empty())
        {
287 288 289 290 291 292 293 294
            param = makePtr<RLOFOpticalFlowParameter>();
        }
        CV_DbgAssert(!param.empty());

        if (param->supportRegionType == SR_CROSS)
        {
            CV_CheckChannelsEQ(prevImg.channels(), 3, "SR_CROSS mode requires images with 3 channels");
            CV_CheckChannelsEQ(nextImg.channels(), 3, "SR_CROSS mode requires images with 3 channels");
295 296
        }

297 298 299 300
        Mat prevImage = prevImg.getMat();
        Mat nextImage = nextImg.getMat();
        Mat prevPtsMat = prevPts.getMat();

301 302 303 304 305 306 307 308 309 310 311 312 313 314
        if (param->useInitialFlow == false)
            nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true);

        int npoints = 0;
        CV_Assert((npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0);
        if (npoints == 0)
        {
            nextPts.release();
            status.release();
            err.release();
            return;
        }
        Mat nextPtsMat = nextPts.getMat();
        CV_Assert(nextPtsMat.checkVector(2, CV_32F, true) == npoints);
315

316 317
        std::vector<cv::Point2f> prevPoints(npoints), nextPoints(npoints), refPoints;

318 319 320 321 322 323 324 325 326 327 328
        if (prevPtsMat.channels() != 2)
            prevPtsMat = prevPtsMat.reshape(2, npoints);

        prevPtsMat.copyTo(prevPoints);

        if (param->useInitialFlow )
        {
            if (nextPtsMat.channels() != 2)
                nextPtsMat = nextPtsMat.reshape(2, npoints);
            nextPtsMat.copyTo(nextPoints);
        }
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        cv::Mat statusMat;
        cv::Mat errorMat;
        if (status.needed() || forwardBackwardThreshold > 0)
        {
            status.create((int)npoints, 1, CV_8U, -1, true);
            statusMat = status.getMat();
            statusMat.setTo(1);
        }

        if (err.needed() || forwardBackwardThreshold > 0)
        {
            err.create((int)npoints, 1, CV_32F, -1, true);
            errorMat = err.getMat();
            errorMat.setTo(0);
        }

        calcLocalOpticalFlow(prevImage, nextImage, prevPyramid, currPyramid, prevPoints, nextPoints, *(param.get()));
        cv::Mat(1,npoints , CV_32FC2, &nextPoints[0]).copyTo(nextPtsMat);
        if (forwardBackwardThreshold > 0)
        {
            // reuse image pyramids
            calcLocalOpticalFlow(nextImage, prevImage, currPyramid, prevPyramid, nextPoints, refPoints, *(param.get()));
        }
        for (unsigned int r = 0; r < refPoints.size(); r++)
        {
            Point2f diff = refPoints[r] - prevPoints[r];
            errorMat.at<float>(r) = sqrt(diff.x * diff.x + diff.y * diff.y);
356
            if (errorMat.at<float>(r) > forwardBackwardThreshold)
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
                statusMat.at<uchar>(r) = 0;
        }

    }

protected:
    Ptr<RLOFOpticalFlowParameter> param;
    float                forwardBackwardThreshold;
    Ptr<CImageBuffer>    prevPyramid[2];
    Ptr<CImageBuffer>    currPyramid[2];
};

Ptr<SparseRLOFOpticalFlow> SparseRLOFOpticalFlow::create(
    Ptr<RLOFOpticalFlowParameter>  rlofParam,
    float forwardBackwardThreshold)
{
    Ptr<SparseRLOFOpticalFlow> algo = makePtr<SparseRLOFOpticalFlowImpl>();
    algo->setRLOFOpticalFlowParameter(rlofParam);
    algo->setForwardBackward(forwardBackwardThreshold);
    return algo;
}

void calcOpticalFlowDenseRLOF(InputArray I0, InputArray I1, InputOutputArray flow,
    Ptr<RLOFOpticalFlowParameter>  rlofParam ,
    float forewardBackwardThreshold, Size gridStep,
    InterpolationType interp_type,
    int epicK, float epicSigma, float epicLambda,
    bool use_post_proc, float fgsLambda, float fgsSigma)
{
    Ptr<DenseRLOFOpticalFlow> algo = DenseRLOFOpticalFlow::create(
        rlofParam, forewardBackwardThreshold, gridStep, interp_type,
        epicK, epicSigma, epicLambda, use_post_proc, fgsLambda, fgsSigma);
    algo->calc(I0, I1, flow);
    algo->collectGarbage();
}

void calcOpticalFlowSparseRLOF(InputArray prevImg, InputArray nextImg,
    InputArray prevPts, InputOutputArray nextPts,
    OutputArray status, OutputArray err,
    Ptr<RLOFOpticalFlowParameter>  rlofParam,
    float forewardBackwardThreshold)
{
    Ptr<SparseRLOFOpticalFlow> algo = SparseRLOFOpticalFlow::create(
        rlofParam, forewardBackwardThreshold);
    algo->calc(prevImg, nextImg, prevPts, nextPts, status, err);
}
Ptr<DenseOpticalFlow> createOptFlow_DenseRLOF()
{
    return DenseRLOFOpticalFlow::create();
}

Ptr<SparseOpticalFlow> createOptFlow_SparseRLOF()
{
    return SparseRLOFOpticalFlow::create();
}

}} // namespace