deepflow.cpp 6.07 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*M///////////////////////////////////////////////////////////////////////////////////////
 //
 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 //
 //  By downloading, copying, installing or using the software you agree to this license.
 //  If you do not agree to this license, do not download, install,
 //  copy or use the software.
 //
 //
 //                           License Agreement
 //                For Open Source Computer Vision Library
 //
 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 // Third party copyrights are property of their respective owners.
 //
 // Redistribution and use in source and binary forms, with or without modification,
 // are permitted provided that the following conditions are met:
 //
 //   * Redistribution's of source code must retain the above copyright notice,
 //     this list of conditions and the following disclaimer.
 //
 //   * Redistribution's in binary form must reproduce the above copyright notice,
 //     this list of conditions and the following disclaimer in the documentation
 //     and/or other materials provided with the distribution.
 //
 //   * The name of the copyright holders may not be used to endorse or promote products
 //     derived from this software without specific prior written permission.
 //
 // This software is provided by the copyright holders and contributors "as is" and
 // any express or implied warranties, including, but not limited to, the implied
 // warranties of merchantability and fitness for a particular purpose are disclaimed.
 // In no event shall the Intel Corporation or contributors be liable for any direct,
 // indirect, incidental, special, exemplary, or consequential damages
 // (including, but not limited to, procurement of substitute goods or services;
 // loss of use, data, or profits; or business interruption) however caused
 // and on any theory of liability, whether in contract, strict liability,
 // or tort (including negligence or otherwise) arising in any way out of
 // the use of this software, even if advised of the possibility of such damage.
 //
 //M*/

#include "precomp.hpp"

namespace cv
{
namespace optflow
{

class OpticalFlowDeepFlow: public DenseOpticalFlow
{
public:
    OpticalFlowDeepFlow();

55 56
    void calc( InputArray I0, InputArray I1, InputOutputArray flow ) CV_OVERRIDE;
    void collectGarbage() CV_OVERRIDE;
57 58 59 60 61 62 63 64 65 66 67 68 69

protected:
    float sigma; // Gaussian smoothing parameter
    int minSize; // minimal dimension of an image in the pyramid
    float downscaleFactor; // scaling factor in the pyramid
    int fixedPointIterations; // during each level of the pyramid
    int sorIterations; // iterations of SOR
    float alpha; // smoothness assumption weight
    float delta; // color constancy weight
    float gamma; // gradient constancy weight
    float omega; // relaxation factor in SOR

    int maxLayers; // max amount of layers in the pyramid
70
    int interpolationType;
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

private:
    std::vector<Mat> buildPyramid( const Mat& src );

};

OpticalFlowDeepFlow::OpticalFlowDeepFlow()
{
    // parameters
    sigma = 0.6f;
    minSize = 25;
    downscaleFactor = 0.95f;
    fixedPointIterations = 5;
    sorIterations = 25;
    alpha = 1.0f;
    delta = 0.5f;
    gamma = 5.0f;
    omega = 1.6f;

    //consts
    interpolationType = INTER_LINEAR;
    maxLayers = 200;
}

std::vector<Mat> OpticalFlowDeepFlow::buildPyramid( const Mat& src )
{
    std::vector<Mat> pyramid;
    pyramid.push_back(src);
    Mat prev = pyramid[0];
100
    for( int i = 0; i < this->maxLayers; ++i)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    {
        Mat next; //TODO: filtering at each level?
        Size nextSize((int) (prev.cols * downscaleFactor + 0.5f),
                        (int) (prev.rows * downscaleFactor + 0.5f));
        if( nextSize.height <= minSize || nextSize.width <= minSize)
            break;
        resize(prev, next,
                nextSize, 0, 0,
                interpolationType);
        pyramid.push_back(next);
        prev = next;
    }
    return pyramid;
}

void OpticalFlowDeepFlow::calc( InputArray _I0, InputArray _I1, InputOutputArray _flow )
{
    Mat I0temp = _I0.getMat();
    Mat I1temp = _I1.getMat();

    CV_Assert(I0temp.size() == I1temp.size());
    CV_Assert(I0temp.type() == I1temp.type());
    CV_Assert(I0temp.channels() == 1);
    // TODO: currently only grayscale - data term could be computed in color version as well...

    Mat I0, I1;

    I0temp.convertTo(I0, CV_32F);
    I1temp.convertTo(I1, CV_32F);

    _flow.create(I0.size(), CV_32FC2);
    Mat W = _flow.getMat(); // if any data present - will be discarded

    // pre-smooth images
135
    int kernelLen = ((int)floor(3 * sigma) * 2) + 1;
136 137 138 139 140 141
    Size kernelSize(kernelLen, kernelLen);
    GaussianBlur(I0, I0, kernelSize, sigma);
    GaussianBlur(I1, I1, kernelSize, sigma);
    // build down-sized pyramids
    std::vector<Mat> pyramid_I0 = buildPyramid(I0);
    std::vector<Mat> pyramid_I1 = buildPyramid(I1);
142
    int levelCount = (int) pyramid_I0.size();
143 144 145 146 147 148 149

    // initialize the first version of flow estimate to zeros
    Size smallestSize = pyramid_I0[levelCount - 1].size();
    W = Mat::zeros(smallestSize, CV_32FC2);

    for ( int level = levelCount - 1; level >= 0; --level )
    { //iterate through  all levels, beginning with the most coarse
150
        Ptr<VariationalRefinement> var = VariationalRefinement::create();
151 152 153 154 155 156 157 158 159

        var->setAlpha(4 * alpha);
        var->setDelta(delta / 3);
        var->setGamma(gamma / 3);
        var->setFixedPointIterations(fixedPointIterations);
        var->setSorIterations(sorIterations);
        var->setOmega(omega);

        var->calc(pyramid_I0[level], pyramid_I1[level], W);
160 161 162 163 164 165 166 167 168 169 170
        if ( level > 0 ) //not the last level
        {
            Mat temp;
            Size newSize = pyramid_I0[level - 1].size();
            resize(W, temp, newSize, 0, 0, interpolationType); //resize calculated flow
            W = temp * (1.0f / downscaleFactor); //scale values
        }
    }
    W.copyTo(_flow);
}

171
void OpticalFlowDeepFlow::collectGarbage() {}
172

173
Ptr<DenseOpticalFlow> createOptFlow_DeepFlow() { return makePtr<OpticalFlowDeepFlow>(); }
174 175 176

}//optflow
}//cv