sift.cpp 33.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/**********************************************************************************************\
 Implementation of SIFT is based on the code from http://blogs.oregonstate.edu/hess/code/sift/
 Below is the original copyright.

//    Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu>
//    All rights reserved.

//    The following patent has been issued for methods embodied in this
//    software: "Method and apparatus for identifying scale invariant features
//    in an image and use of same for locating an object in an image," David
//    G. Lowe, US Patent 6,711,293 (March 23, 2004). Provisional application
//    filed March 8, 1999. Asignee: The University of British Columbia. For
//    further details, contact David Lowe (lowe@cs.ubc.ca) or the
//    University-Industry Liaison Office of the University of British
//    Columbia.

//    Note that restrictions imposed by this patent (and possibly others)
//    exist independently of and may be in conflict with the freedoms granted
//    in this license, which refers to copyright of the program, not patents
//    for any methods that it implements.  Both copyright and patent law must
//    be obeyed to legally use and redistribute this program and it is not the
//    purpose of this license to induce you to infringe any patents or other
//    property right claims or to contest validity of any such claims.  If you
//    redistribute or use the program, then this license merely protects you
//    from committing copyright infringement.  It does not protect you from
//    committing patent infringement.  So, before you do anything with this
//    program, make sure that you have permission to do so not merely in terms
//    of copyright, but also in terms of patent law.

//    Please note that this license is not to be understood as a guarantee
//    either.  If you use the program according to this license, but in
//    conflict with patent law, it does not mean that the licensor will refund
//    you for any losses that you incur if you are sued for your patent
//    infringement.

//    Redistribution and use in source and binary forms, with or without
//    modification, are permitted provided that the following conditions are
//    met:
//        * Redistributions of source code must retain the above copyright and
//          patent notices, this list of conditions and the following
//          disclaimer.
//        * Redistributions in binary form must reproduce the above copyright
//          notice, this list of conditions and the following disclaimer in
//          the documentation and/or other materials provided with the
//          distribution.
//        * Neither the name of Oregon State University nor the names of its
//          contributors may be used to endorse or promote products derived
//          from this software without specific prior written permission.

//    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
//    IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
//    TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
//    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
//    HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
//    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
//    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
//    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
//    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
//    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\**********************************************************************************************/

#include "precomp.hpp"
#include <iostream>
#include <stdarg.h>
108
#include <opencv2/core/hal/hal.hpp>
109 110 111 112 113 114

namespace cv
{
namespace xfeatures2d
{

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*!
 SIFT implementation.

 The class implements SIFT algorithm by D. Lowe.
 */
class SIFT_Impl : public SIFT
{
public:
    explicit SIFT_Impl( int nfeatures = 0, int nOctaveLayers = 3,
                          double contrastThreshold = 0.04, double edgeThreshold = 10,
                          double sigma = 1.6);

    //! returns the descriptor size in floats (128)
    int descriptorSize() const;

    //! returns the descriptor type
    int descriptorType() const;

    //! returns the default norm type
    int defaultNorm() const;

    //! finds the keypoints and computes descriptors for them using SIFT algorithm.
    //! Optionally it can compute descriptors for the user-provided keypoints
    void detectAndCompute(InputArray img, InputArray mask,
                    std::vector<KeyPoint>& keypoints,
                    OutputArray descriptors,
                    bool useProvidedKeypoints = false);

    void buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const;
    void buildDoGPyramid( const std::vector<Mat>& pyr, std::vector<Mat>& dogpyr ) const;
    void findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
                               std::vector<KeyPoint>& keypoints ) const;

protected:
    CV_PROP_RW int nfeatures;
    CV_PROP_RW int nOctaveLayers;
    CV_PROP_RW double contrastThreshold;
    CV_PROP_RW double edgeThreshold;
    CV_PROP_RW double sigma;
};

Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
                     double _contrastThreshold, double _edgeThreshold, double _sigma )
{
    return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma);
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/******************************* Defs and macros *****************************/

// default width of descriptor histogram array
static const int SIFT_DESCR_WIDTH = 4;

// default number of bins per histogram in descriptor array
static const int SIFT_DESCR_HIST_BINS = 8;

// assumed gaussian blur for input image
static const float SIFT_INIT_SIGMA = 0.5f;

// width of border in which to ignore keypoints
static const int SIFT_IMG_BORDER = 5;

// maximum steps of keypoint interpolation before failure
static const int SIFT_MAX_INTERP_STEPS = 5;

// default number of bins in histogram for orientation assignment
static const int SIFT_ORI_HIST_BINS = 36;

// determines gaussian sigma for orientation assignment
static const float SIFT_ORI_SIG_FCTR = 1.5f;

// determines the radius of the region used in orientation assignment
static const float SIFT_ORI_RADIUS = 3 * SIFT_ORI_SIG_FCTR;

// orientation magnitude relative to max that results in new feature
static const float SIFT_ORI_PEAK_RATIO = 0.8f;

// determines the size of a single descriptor orientation histogram
static const float SIFT_DESCR_SCL_FCTR = 3.f;

// threshold on magnitude of elements of descriptor vector
static const float SIFT_DESCR_MAG_THR = 0.2f;

// factor used to convert floating-point descriptor to unsigned char
static const float SIFT_INT_DESCR_FCTR = 512.f;

#if 0
// intermediate type used for DoG pyramids
typedef short sift_wt;
static const int SIFT_FIXPT_SCALE = 48;
#else
// intermediate type used for DoG pyramids
typedef float sift_wt;
static const int SIFT_FIXPT_SCALE = 1;
#endif

static inline void
unpackOctave(const KeyPoint& kpt, int& octave, int& layer, float& scale)
{
    octave = kpt.octave & 255;
    layer = (kpt.octave >> 8) & 255;
    octave = octave < 128 ? octave : (-128 | octave);
    scale = octave >= 0 ? 1.f/(1 << octave) : (float)(1 << -octave);
}

static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma )
{
    Mat gray, gray_fpt;
    if( img.channels() == 3 || img.channels() == 4 )
Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
223
    {
224
        cvtColor(img, gray, COLOR_BGR2GRAY);
Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
225 226
        gray.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
    }
227
    else
Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
228
        img.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
229 230 231 232 233 234 235

    float sig_diff;

    if( doubleImageSize )
    {
        sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4, 0.01f) );
        Mat dbl;
Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
236
        resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR);
237 238 239 240 241 242 243 244 245 246 247 248
        GaussianBlur(dbl, dbl, Size(), sig_diff, sig_diff);
        return dbl;
    }
    else
    {
        sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA, 0.01f) );
        GaussianBlur(gray_fpt, gray_fpt, Size(), sig_diff, sig_diff);
        return gray_fpt;
    }
}


249
void SIFT_Impl::buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
{
    std::vector<double> sig(nOctaveLayers + 3);
    pyr.resize(nOctaves*(nOctaveLayers + 3));

    // precompute Gaussian sigmas using the following formula:
    //  \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
    sig[0] = sigma;
    double k = std::pow( 2., 1. / nOctaveLayers );
    for( int i = 1; i < nOctaveLayers + 3; i++ )
    {
        double sig_prev = std::pow(k, (double)(i-1))*sigma;
        double sig_total = sig_prev*k;
        sig[i] = std::sqrt(sig_total*sig_total - sig_prev*sig_prev);
    }

    for( int o = 0; o < nOctaves; o++ )
    {
        for( int i = 0; i < nOctaveLayers + 3; i++ )
        {
            Mat& dst = pyr[o*(nOctaveLayers + 3) + i];
            if( o == 0  &&  i == 0 )
                dst = base;
            // base of new octave is halved image from end of previous octave
            else if( i == 0 )
            {
                const Mat& src = pyr[(o-1)*(nOctaveLayers + 3) + nOctaveLayers];
                resize(src, dst, Size(src.cols/2, src.rows/2),
                       0, 0, INTER_NEAREST);
            }
            else
            {
                const Mat& src = pyr[o*(nOctaveLayers + 3) + i-1];
                GaussianBlur(src, dst, Size(), sig[i], sig[i]);
            }
        }
    }
}


289
void SIFT_Impl::buildDoGPyramid( const std::vector<Mat>& gpyr, std::vector<Mat>& dogpyr ) const
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
{
    int nOctaves = (int)gpyr.size()/(nOctaveLayers + 3);
    dogpyr.resize( nOctaves*(nOctaveLayers + 2) );

    for( int o = 0; o < nOctaves; o++ )
    {
        for( int i = 0; i < nOctaveLayers + 2; i++ )
        {
            const Mat& src1 = gpyr[o*(nOctaveLayers + 3) + i];
            const Mat& src2 = gpyr[o*(nOctaveLayers + 3) + i + 1];
            Mat& dst = dogpyr[o*(nOctaveLayers + 2) + i];
            subtract(src2, src1, dst, noArray(), DataType<sift_wt>::type);
        }
    }
}


// Computes a gradient orientation histogram at a specified pixel
static float calcOrientationHist( const Mat& img, Point pt, int radius,
                                  float sigma, float* hist, int n )
{
    int i, j, k, len = (radius*2+1)*(radius*2+1);

    float expf_scale = -1.f/(2.f * sigma * sigma);
    AutoBuffer<float> buf(len*4 + n+4);
    float *X = buf, *Y = X + len, *Mag = X, *Ori = Y + len, *W = Ori + len;
    float* temphist = W + len + 2;

    for( i = 0; i < n; i++ )
        temphist[i] = 0.f;

    for( i = -radius, k = 0; i <= radius; i++ )
    {
        int y = pt.y + i;
        if( y <= 0 || y >= img.rows - 1 )
            continue;
        for( j = -radius; j <= radius; j++ )
        {
            int x = pt.x + j;
            if( x <= 0 || x >= img.cols - 1 )
                continue;

            float dx = (float)(img.at<sift_wt>(y, x+1) - img.at<sift_wt>(y, x-1));
            float dy = (float)(img.at<sift_wt>(y-1, x) - img.at<sift_wt>(y+1, x));

            X[k] = dx; Y[k] = dy; W[k] = (i*i + j*j)*expf_scale;
            k++;
        }
    }

    len = k;

    // compute gradient values, orientations and the weights over the pixel neighborhood
343 344 345
    cv::hal::exp32f(W, W, len);
    cv::hal::fastAtan2(Y, X, Ori, len, true);
    cv::hal::magnitude32f(X, Y, Mag, len);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

    for( k = 0; k < len; k++ )
    {
        int bin = cvRound((n/360.f)*Ori[k]);
        if( bin >= n )
            bin -= n;
        if( bin < 0 )
            bin += n;
        temphist[bin] += W[k]*Mag[k];
    }

    // smooth the histogram
    temphist[-1] = temphist[n-1];
    temphist[-2] = temphist[n-2];
    temphist[n] = temphist[0];
    temphist[n+1] = temphist[1];
    for( i = 0; i < n; i++ )
    {
        hist[i] = (temphist[i-2] + temphist[i+2])*(1.f/16.f) +
            (temphist[i-1] + temphist[i+1])*(4.f/16.f) +
            temphist[i]*(6.f/16.f);
    }

    float maxval = hist[0];
    for( i = 1; i < n; i++ )
        maxval = std::max(maxval, hist[i]);

    return maxval;
}


//
// Interpolates a scale-space extremum's location and scale to subpixel
// accuracy to form an image feature. Rejects features with low contrast.
// Based on Section 4 of Lowe's paper.
static bool adjustLocalExtrema( const std::vector<Mat>& dog_pyr, KeyPoint& kpt, int octv,
                                int& layer, int& r, int& c, int nOctaveLayers,
                                float contrastThreshold, float edgeThreshold, float sigma )
{
    const float img_scale = 1.f/(255*SIFT_FIXPT_SCALE);
    const float deriv_scale = img_scale*0.5f;
    const float second_deriv_scale = img_scale;
    const float cross_deriv_scale = img_scale*0.25f;

    float xi=0, xr=0, xc=0, contr=0;
    int i = 0;

    for( ; i < SIFT_MAX_INTERP_STEPS; i++ )
    {
        int idx = octv*(nOctaveLayers+2) + layer;
        const Mat& img = dog_pyr[idx];
        const Mat& prev = dog_pyr[idx-1];
        const Mat& next = dog_pyr[idx+1];

        Vec3f dD((img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1))*deriv_scale,
                 (img.at<sift_wt>(r+1, c) - img.at<sift_wt>(r-1, c))*deriv_scale,
                 (next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c))*deriv_scale);

        float v2 = (float)img.at<sift_wt>(r, c)*2;
        float dxx = (img.at<sift_wt>(r, c+1) + img.at<sift_wt>(r, c-1) - v2)*second_deriv_scale;
        float dyy = (img.at<sift_wt>(r+1, c) + img.at<sift_wt>(r-1, c) - v2)*second_deriv_scale;
        float dss = (next.at<sift_wt>(r, c) + prev.at<sift_wt>(r, c) - v2)*second_deriv_scale;
        float dxy = (img.at<sift_wt>(r+1, c+1) - img.at<sift_wt>(r+1, c-1) -
                     img.at<sift_wt>(r-1, c+1) + img.at<sift_wt>(r-1, c-1))*cross_deriv_scale;
        float dxs = (next.at<sift_wt>(r, c+1) - next.at<sift_wt>(r, c-1) -
                     prev.at<sift_wt>(r, c+1) + prev.at<sift_wt>(r, c-1))*cross_deriv_scale;
        float dys = (next.at<sift_wt>(r+1, c) - next.at<sift_wt>(r-1, c) -
                     prev.at<sift_wt>(r+1, c) + prev.at<sift_wt>(r-1, c))*cross_deriv_scale;

        Matx33f H(dxx, dxy, dxs,
                  dxy, dyy, dys,
                  dxs, dys, dss);

        Vec3f X = H.solve(dD, DECOMP_LU);

        xi = -X[2];
        xr = -X[1];
        xc = -X[0];

        if( std::abs(xi) < 0.5f && std::abs(xr) < 0.5f && std::abs(xc) < 0.5f )
            break;

        if( std::abs(xi) > (float)(INT_MAX/3) ||
            std::abs(xr) > (float)(INT_MAX/3) ||
            std::abs(xc) > (float)(INT_MAX/3) )
            return false;

        c += cvRound(xc);
        r += cvRound(xr);
        layer += cvRound(xi);

        if( layer < 1 || layer > nOctaveLayers ||
            c < SIFT_IMG_BORDER || c >= img.cols - SIFT_IMG_BORDER  ||
            r < SIFT_IMG_BORDER || r >= img.rows - SIFT_IMG_BORDER )
            return false;
    }

    // ensure convergence of interpolation
    if( i >= SIFT_MAX_INTERP_STEPS )
        return false;

    {
        int idx = octv*(nOctaveLayers+2) + layer;
        const Mat& img = dog_pyr[idx];
        const Mat& prev = dog_pyr[idx-1];
        const Mat& next = dog_pyr[idx+1];
        Matx31f dD((img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1))*deriv_scale,
                   (img.at<sift_wt>(r+1, c) - img.at<sift_wt>(r-1, c))*deriv_scale,
                   (next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c))*deriv_scale);
        float t = dD.dot(Matx31f(xc, xr, xi));

        contr = img.at<sift_wt>(r, c)*img_scale + t * 0.5f;
        if( std::abs( contr ) * nOctaveLayers < contrastThreshold )
            return false;

        // principal curvatures are computed using the trace and det of Hessian
        float v2 = img.at<sift_wt>(r, c)*2.f;
        float dxx = (img.at<sift_wt>(r, c+1) + img.at<sift_wt>(r, c-1) - v2)*second_deriv_scale;
        float dyy = (img.at<sift_wt>(r+1, c) + img.at<sift_wt>(r-1, c) - v2)*second_deriv_scale;
        float dxy = (img.at<sift_wt>(r+1, c+1) - img.at<sift_wt>(r+1, c-1) -
                     img.at<sift_wt>(r-1, c+1) + img.at<sift_wt>(r-1, c-1)) * cross_deriv_scale;
        float tr = dxx + dyy;
        float det = dxx * dyy - dxy * dxy;

        if( det <= 0 || tr*tr*edgeThreshold >= (edgeThreshold + 1)*(edgeThreshold + 1)*det )
            return false;
    }

    kpt.pt.x = (c + xc) * (1 << octv);
    kpt.pt.y = (r + xr) * (1 << octv);
    kpt.octave = octv + (layer << 8) + (cvRound((xi + 0.5)*255) << 16);
    kpt.size = sigma*powf(2.f, (layer + xi) / nOctaveLayers)*(1 << octv)*2;
    kpt.response = std::abs(contr);

    return true;
}


//
// Detects features at extrema in DoG scale space.  Bad features are discarded
// based on contrast and ratio of principal curvatures.
487
void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
                                  std::vector<KeyPoint>& keypoints ) const
{
    int nOctaves = (int)gauss_pyr.size()/(nOctaveLayers + 3);
    int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE);
    const int n = SIFT_ORI_HIST_BINS;
    float hist[n];
    KeyPoint kpt;

    keypoints.clear();

    for( int o = 0; o < nOctaves; o++ )
        for( int i = 1; i <= nOctaveLayers; i++ )
        {
            int idx = o*(nOctaveLayers+2)+i;
            const Mat& img = dog_pyr[idx];
            const Mat& prev = dog_pyr[idx-1];
            const Mat& next = dog_pyr[idx+1];
            int step = (int)img.step1();
            int rows = img.rows, cols = img.cols;

            for( int r = SIFT_IMG_BORDER; r < rows-SIFT_IMG_BORDER; r++)
            {
                const sift_wt* currptr = img.ptr<sift_wt>(r);
                const sift_wt* prevptr = prev.ptr<sift_wt>(r);
                const sift_wt* nextptr = next.ptr<sift_wt>(r);

                for( int c = SIFT_IMG_BORDER; c < cols-SIFT_IMG_BORDER; c++)
                {
                    sift_wt val = currptr[c];

                    // find local extrema with pixel accuracy
                    if( std::abs(val) > threshold &&
                       ((val > 0 && val >= currptr[c-1] && val >= currptr[c+1] &&
                         val >= currptr[c-step-1] && val >= currptr[c-step] && val >= currptr[c-step+1] &&
                         val >= currptr[c+step-1] && val >= currptr[c+step] && val >= currptr[c+step+1] &&
                         val >= nextptr[c] && val >= nextptr[c-1] && val >= nextptr[c+1] &&
                         val >= nextptr[c-step-1] && val >= nextptr[c-step] && val >= nextptr[c-step+1] &&
                         val >= nextptr[c+step-1] && val >= nextptr[c+step] && val >= nextptr[c+step+1] &&
                         val >= prevptr[c] && val >= prevptr[c-1] && val >= prevptr[c+1] &&
                         val >= prevptr[c-step-1] && val >= prevptr[c-step] && val >= prevptr[c-step+1] &&
                         val >= prevptr[c+step-1] && val >= prevptr[c+step] && val >= prevptr[c+step+1]) ||
                        (val < 0 && val <= currptr[c-1] && val <= currptr[c+1] &&
                         val <= currptr[c-step-1] && val <= currptr[c-step] && val <= currptr[c-step+1] &&
                         val <= currptr[c+step-1] && val <= currptr[c+step] && val <= currptr[c+step+1] &&
                         val <= nextptr[c] && val <= nextptr[c-1] && val <= nextptr[c+1] &&
                         val <= nextptr[c-step-1] && val <= nextptr[c-step] && val <= nextptr[c-step+1] &&
                         val <= nextptr[c+step-1] && val <= nextptr[c+step] && val <= nextptr[c+step+1] &&
                         val <= prevptr[c] && val <= prevptr[c-1] && val <= prevptr[c+1] &&
                         val <= prevptr[c-step-1] && val <= prevptr[c-step] && val <= prevptr[c-step+1] &&
                         val <= prevptr[c+step-1] && val <= prevptr[c+step] && val <= prevptr[c+step+1])))
                    {
                        int r1 = r, c1 = c, layer = i;
                        if( !adjustLocalExtrema(dog_pyr, kpt, o, layer, r1, c1,
                                                nOctaveLayers, (float)contrastThreshold,
                                                (float)edgeThreshold, (float)sigma) )
                            continue;
                        float scl_octv = kpt.size*0.5f/(1 << o);
                        float omax = calcOrientationHist(gauss_pyr[o*(nOctaveLayers+3) + layer],
                                                         Point(c1, r1),
                                                         cvRound(SIFT_ORI_RADIUS * scl_octv),
                                                         SIFT_ORI_SIG_FCTR * scl_octv,
                                                         hist, n);
                        float mag_thr = (float)(omax * SIFT_ORI_PEAK_RATIO);
                        for( int j = 0; j < n; j++ )
                        {
                            int l = j > 0 ? j - 1 : n - 1;
                            int r2 = j < n-1 ? j + 1 : 0;

                            if( hist[j] > hist[l]  &&  hist[j] > hist[r2]  &&  hist[j] >= mag_thr )
                            {
                                float bin = j + 0.5f * (hist[l]-hist[r2]) / (hist[l] - 2*hist[j] + hist[r2]);
                                bin = bin < 0 ? n + bin : bin >= n ? bin - n : bin;
                                kpt.angle = 360.f - (float)((360.f/n) * bin);
                                if(std::abs(kpt.angle - 360.f) < FLT_EPSILON)
                                    kpt.angle = 0.f;
                                keypoints.push_back(kpt);
                            }
                        }
                    }
                }
            }
        }
}


static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float scl,
                               int d, int n, float* dst )
{
    Point pt(cvRound(ptf.x), cvRound(ptf.y));
    float cos_t = cosf(ori*(float)(CV_PI/180));
    float sin_t = sinf(ori*(float)(CV_PI/180));
    float bins_per_rad = n / 360.f;
    float exp_scale = -1.f/(d * d * 0.5f);
    float hist_width = SIFT_DESCR_SCL_FCTR * scl;
    int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f);
    // Clip the radius to the diagonal of the image to avoid autobuffer too large exception
584
    radius = std::min(radius, (int) sqrt(((double) img.cols)*img.cols + ((double) img.rows)*img.rows));
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    cos_t /= hist_width;
    sin_t /= hist_width;

    int i, j, k, len = (radius*2+1)*(radius*2+1), histlen = (d+2)*(d+2)*(n+2);
    int rows = img.rows, cols = img.cols;

    AutoBuffer<float> buf(len*6 + histlen);
    float *X = buf, *Y = X + len, *Mag = Y, *Ori = Mag + len, *W = Ori + len;
    float *RBin = W + len, *CBin = RBin + len, *hist = CBin + len;

    for( i = 0; i < d+2; i++ )
    {
        for( j = 0; j < d+2; j++ )
            for( k = 0; k < n+2; k++ )
                hist[(i*(d+2) + j)*(n+2) + k] = 0.;
    }

    for( i = -radius, k = 0; i <= radius; i++ )
        for( j = -radius; j <= radius; j++ )
        {
            // Calculate sample's histogram array coords rotated relative to ori.
            // Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e.
            // r_rot = 1.5) have full weight placed in row 1 after interpolation.
            float c_rot = j * cos_t - i * sin_t;
            float r_rot = j * sin_t + i * cos_t;
            float rbin = r_rot + d/2 - 0.5f;
            float cbin = c_rot + d/2 - 0.5f;
            int r = pt.y + i, c = pt.x + j;

            if( rbin > -1 && rbin < d && cbin > -1 && cbin < d &&
                r > 0 && r < rows - 1 && c > 0 && c < cols - 1 )
            {
                float dx = (float)(img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1));
                float dy = (float)(img.at<sift_wt>(r-1, c) - img.at<sift_wt>(r+1, c));
                X[k] = dx; Y[k] = dy; RBin[k] = rbin; CBin[k] = cbin;
                W[k] = (c_rot * c_rot + r_rot * r_rot)*exp_scale;
                k++;
            }
        }

    len = k;
626 627 628
    cv::hal::fastAtan2(Y, X, Ori, len, true);
    cv::hal::magnitude32f(X, Y, Mag, len);
    cv::hal::exp32f(W, W, len);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

    for( k = 0; k < len; k++ )
    {
        float rbin = RBin[k], cbin = CBin[k];
        float obin = (Ori[k] - ori)*bins_per_rad;
        float mag = Mag[k]*W[k];

        int r0 = cvFloor( rbin );
        int c0 = cvFloor( cbin );
        int o0 = cvFloor( obin );
        rbin -= r0;
        cbin -= c0;
        obin -= o0;

        if( o0 < 0 )
            o0 += n;
        if( o0 >= n )
            o0 -= n;

        // histogram update using tri-linear interpolation
        float v_r1 = mag*rbin, v_r0 = mag - v_r1;
        float v_rc11 = v_r1*cbin, v_rc10 = v_r1 - v_rc11;
        float v_rc01 = v_r0*cbin, v_rc00 = v_r0 - v_rc01;
        float v_rco111 = v_rc11*obin, v_rco110 = v_rc11 - v_rco111;
        float v_rco101 = v_rc10*obin, v_rco100 = v_rc10 - v_rco101;
        float v_rco011 = v_rc01*obin, v_rco010 = v_rc01 - v_rco011;
        float v_rco001 = v_rc00*obin, v_rco000 = v_rc00 - v_rco001;

        int idx = ((r0+1)*(d+2) + c0+1)*(n+2) + o0;
        hist[idx] += v_rco000;
        hist[idx+1] += v_rco001;
        hist[idx+(n+2)] += v_rco010;
        hist[idx+(n+3)] += v_rco011;
        hist[idx+(d+2)*(n+2)] += v_rco100;
        hist[idx+(d+2)*(n+2)+1] += v_rco101;
        hist[idx+(d+3)*(n+2)] += v_rco110;
        hist[idx+(d+3)*(n+2)+1] += v_rco111;
    }

    // finalize histogram, since the orientation histograms are circular
    for( i = 0; i < d; i++ )
        for( j = 0; j < d; j++ )
        {
            int idx = ((i+1)*(d+2) + (j+1))*(n+2);
            hist[idx] += hist[idx+n];
            hist[idx+1] += hist[idx+n+1];
            for( k = 0; k < n; k++ )
                dst[(i*d + j)*n + k] = hist[idx+k];
        }
    // copy histogram to the descriptor,
    // apply hysteresis thresholding
    // and scale the result, so that it can be easily converted
    // to byte array
    float nrm2 = 0;
    len = d*d*n;
    for( k = 0; k < len; k++ )
        nrm2 += dst[k]*dst[k];
    float thr = std::sqrt(nrm2)*SIFT_DESCR_MAG_THR;
    for( i = 0, nrm2 = 0; i < k; i++ )
    {
        float val = std::min(dst[i], thr);
        dst[i] = val;
        nrm2 += val*val;
    }
    nrm2 = SIFT_INT_DESCR_FCTR/std::max(std::sqrt(nrm2), FLT_EPSILON);

#if 1
    for( k = 0; k < len; k++ )
    {
        dst[k] = saturate_cast<uchar>(dst[k]*nrm2);
    }
#else
    float nrm1 = 0;
    for( k = 0; k < len; k++ )
    {
        dst[k] *= nrm2;
        nrm1 += dst[k];
    }
    nrm1 = 1.f/std::max(nrm1, FLT_EPSILON);
    for( k = 0; k < len; k++ )
    {
        dst[k] = std::sqrt(dst[k] * nrm1);//saturate_cast<uchar>(std::sqrt(dst[k] * nrm1)*SIFT_INT_DESCR_FCTR);
    }
#endif
}

static void calcDescriptors(const std::vector<Mat>& gpyr, const std::vector<KeyPoint>& keypoints,
                            Mat& descriptors, int nOctaveLayers, int firstOctave )
{
    int d = SIFT_DESCR_WIDTH, n = SIFT_DESCR_HIST_BINS;

    for( size_t i = 0; i < keypoints.size(); i++ )
    {
        KeyPoint kpt = keypoints[i];
        int octave, layer;
        float scale;
        unpackOctave(kpt, octave, layer, scale);
        CV_Assert(octave >= firstOctave && layer <= nOctaveLayers+2);
        float size=kpt.size*scale;
        Point2f ptf(kpt.pt.x*scale, kpt.pt.y*scale);
        const Mat& img = gpyr[(octave - firstOctave)*(nOctaveLayers + 3) + layer];

        float angle = 360.f - kpt.angle;
        if(std::abs(angle - 360.f) < FLT_EPSILON)
            angle = 0.f;
        calcSIFTDescriptor(img, ptf, angle, size*0.5f, d, n, descriptors.ptr<float>((int)i));
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

740
SIFT_Impl::SIFT_Impl( int _nfeatures, int _nOctaveLayers,
741 742 743 744 745 746
           double _contrastThreshold, double _edgeThreshold, double _sigma )
    : nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers),
    contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma)
{
}

747
int SIFT_Impl::descriptorSize() const
748 749 750 751
{
    return SIFT_DESCR_WIDTH*SIFT_DESCR_WIDTH*SIFT_DESCR_HIST_BINS;
}

752
int SIFT_Impl::descriptorType() const
753 754 755 756
{
    return CV_32F;
}

757
int SIFT_Impl::defaultNorm() const
758 759 760 761 762
{
    return NORM_L2;
}


763
void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask,
764 765
                      std::vector<KeyPoint>& keypoints,
                      OutputArray _descriptors,
766
                      bool useProvidedKeypoints)
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
{
    int firstOctave = -1, actualNOctaves = 0, actualNLayers = 0;
    Mat image = _image.getMat(), mask = _mask.getMat();

    if( image.empty() || image.depth() != CV_8U )
        CV_Error( Error::StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" );

    if( !mask.empty() && mask.type() != CV_8UC1 )
        CV_Error( Error::StsBadArg, "mask has incorrect type (!=CV_8UC1)" );

    if( useProvidedKeypoints )
    {
        firstOctave = 0;
        int maxOctave = INT_MIN;
        for( size_t i = 0; i < keypoints.size(); i++ )
        {
            int octave, layer;
            float scale;
            unpackOctave(keypoints[i], octave, layer, scale);
            firstOctave = std::min(firstOctave, octave);
            maxOctave = std::max(maxOctave, octave);
            actualNLayers = std::max(actualNLayers, layer-2);
        }

        firstOctave = std::min(firstOctave, 0);
        CV_Assert( firstOctave >= -1 && actualNLayers <= nOctaveLayers );
        actualNOctaves = maxOctave - firstOctave + 1;
    }

    Mat base = createInitialImage(image, firstOctave < 0, (float)sigma);
    std::vector<Mat> gpyr, dogpyr;
    int nOctaves = actualNOctaves > 0 ? actualNOctaves : cvRound(std::log( (double)std::min( base.cols, base.rows ) ) / std::log(2.) - 2) - firstOctave;

    //double t, tf = getTickFrequency();
    //t = (double)getTickCount();
    buildGaussianPyramid(base, gpyr, nOctaves);
    buildDoGPyramid(gpyr, dogpyr);

    //t = (double)getTickCount() - t;
    //printf("pyramid construction time: %g\n", t*1000./tf);

    if( !useProvidedKeypoints )
    {
        //t = (double)getTickCount();
        findScaleSpaceExtrema(gpyr, dogpyr, keypoints);
        KeyPointsFilter::removeDuplicated( keypoints );

        if( nfeatures > 0 )
            KeyPointsFilter::retainBest(keypoints, nfeatures);
        //t = (double)getTickCount() - t;
        //printf("keypoint detection time: %g\n", t*1000./tf);

        if( firstOctave < 0 )
            for( size_t i = 0; i < keypoints.size(); i++ )
            {
                KeyPoint& kpt = keypoints[i];
                float scale = 1.f/(float)(1 << -firstOctave);
                kpt.octave = (kpt.octave & ~255) | ((kpt.octave + firstOctave) & 255);
                kpt.pt *= scale;
                kpt.size *= scale;
            }

        if( !mask.empty() )
            KeyPointsFilter::runByPixelsMask( keypoints, mask );
    }
    else
    {
        // filter keypoints by mask
        //KeyPointsFilter::runByPixelsMask( keypoints, mask );
    }

    if( _descriptors.needed() )
    {
        //t = (double)getTickCount();
        int dsize = descriptorSize();
        _descriptors.create((int)keypoints.size(), dsize, CV_32F);
        Mat descriptors = _descriptors.getMat();

        calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave);
        //t = (double)getTickCount() - t;
        //printf("descriptor extraction time: %g\n", t*1000./tf);
    }
}

}
}