test_OF_accuracy.cpp 9.37 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include <fstream>

using namespace std;
using namespace cv;
using namespace cvtest;
using namespace optflow;

static string getDataDir() { return TS::ptr()->get_data_path(); }

52 53 54 55 56 57
static string getRubberWhaleFrame1() { return getDataDir() + "optflow/RubberWhale1.png"; }

static string getRubberWhaleFrame2() { return getDataDir() + "optflow/RubberWhale2.png"; }

static string getRubberWhaleGroundTruth() { return getDataDir() + "optflow/RubberWhale.flo"; }

58 59
static bool isFlowCorrect(float u) { return !cvIsNaN(u) && (fabs(u) < 1e9); }

60 61
static bool isFlowCorrect(double u) { return !cvIsNaN(u) && (fabs(u) < 1e9); }

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static float calcRMSE(Mat flow1, Mat flow2)
{
    float sum = 0;
    int counter = 0;
    const int rows = flow1.rows;
    const int cols = flow1.cols;

    for (int y = 0; y < rows; ++y)
    {
        for (int x = 0; x < cols; ++x)
        {
            Vec2f flow1_at_point = flow1.at<Vec2f>(y, x);
            Vec2f flow2_at_point = flow2.at<Vec2f>(y, x);

            float u1 = flow1_at_point[0];
            float v1 = flow1_at_point[1];
            float u2 = flow2_at_point[0];
            float v2 = flow2_at_point[1];

            if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2))
            {
                sum += (u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2);
                counter++;
            }
        }
    }
    return (float)sqrt(sum / (1e-9 + counter));
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
static float calcAvgEPE(vector< pair<Point2i, Point2i> > corr, Mat flow)
{
    double sum = 0;
    int counter = 0;

    for (size_t i = 0; i < corr.size(); ++i)
    {
        Vec2f flow1_at_point = Point2f(corr[i].second - corr[i].first);
        Vec2f flow2_at_point = flow.at<Vec2f>(corr[i].first.y, corr[i].first.x);

        double u1 = (double)flow1_at_point[0];
        double v1 = (double)flow1_at_point[1];
        double u2 = (double)flow2_at_point[0];
        double v2 = (double)flow2_at_point[1];

        if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2))
        {
            sum += sqrt((u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2));
            counter++;
        }
    }

    return (float)(sum / counter);
}

116 117
bool readRubberWhale(Mat &dst_frame_1, Mat &dst_frame_2, Mat &dst_GT)
{
118 119 120
    const string frame1_path = getRubberWhaleFrame1();
    const string frame2_path = getRubberWhaleFrame2();
    const string gt_flow_path = getRubberWhaleGroundTruth();
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    dst_frame_1 = imread(frame1_path);
    dst_frame_2 = imread(frame2_path);
    dst_GT = readOpticalFlow(gt_flow_path);

    if (dst_frame_1.empty() || dst_frame_2.empty() || dst_GT.empty())
        return false;
    else
        return true;
}

TEST(DenseOpticalFlow_SimpleFlow, ReferenceAccuracy)
{
    Mat frame1, frame2, GT;
    ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
    float target_RMSE = 0.37f;

    Mat flow;
    Ptr<DenseOpticalFlow> algo;
    algo = createOptFlow_SimpleFlow();
    algo->calc(frame1, frame2, flow);
    ASSERT_EQ(GT.rows, flow.rows);
    ASSERT_EQ(GT.cols, flow.cols);
    EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
}

TEST(DenseOpticalFlow_DeepFlow, ReferenceAccuracy)
{
    Mat frame1, frame2, GT;
    ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
    float target_RMSE = 0.35f;
    cvtColor(frame1, frame1, COLOR_BGR2GRAY);
    cvtColor(frame2, frame2, COLOR_BGR2GRAY);

    Mat flow;
    Ptr<DenseOpticalFlow> algo;
    algo = createOptFlow_DeepFlow();
    algo->calc(frame1, frame2, flow);
    ASSERT_EQ(GT.rows, flow.rows);
    ASSERT_EQ(GT.cols, flow.cols);
    EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
}

TEST(DenseOpticalFlow_SparseToDenseFlow, ReferenceAccuracy)
{
    Mat frame1, frame2, GT;
    ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
    float target_RMSE = 0.52f;

    Mat flow;
    Ptr<DenseOpticalFlow> algo;
    algo = createOptFlow_SparseToDense();
    algo->calc(frame1, frame2, flow);
    ASSERT_EQ(GT.rows, flow.rows);
    ASSERT_EQ(GT.cols, flow.cols);
    EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
}

TEST(DenseOpticalFlow_DIS, ReferenceAccuracy)
{
    Mat frame1, frame2, GT;
    ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
    int presets[] = {DISOpticalFlow::PRESET_ULTRAFAST, DISOpticalFlow::PRESET_FAST, DISOpticalFlow::PRESET_MEDIUM};
    float target_RMSE[] = {0.86f, 0.74f, 0.49f};
    cvtColor(frame1, frame1, COLOR_BGR2GRAY);
    cvtColor(frame2, frame2, COLOR_BGR2GRAY);

    Ptr<DenseOpticalFlow> algo;

    // iterate over presets:
    for (int i = 0; i < 3; i++)
    {
        Mat flow;
        algo = createOptFlow_DIS(presets[i]);
        algo->calc(frame1, frame2, flow);
        ASSERT_EQ(GT.rows, flow.rows);
        ASSERT_EQ(GT.cols, flow.cols);
        EXPECT_LE(calcRMSE(GT, flow), target_RMSE[i]);
    }
}

TEST(DenseOpticalFlow_VariationalRefinement, ReferenceAccuracy)
{
    Mat frame1, frame2, GT;
    ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
    float target_RMSE = 0.86f;
    cvtColor(frame1, frame1, COLOR_BGR2GRAY);
    cvtColor(frame2, frame2, COLOR_BGR2GRAY);

    Ptr<VariationalRefinement> var_ref;
    var_ref = createVariationalFlowRefinement();
    var_ref->setAlpha(20.0f);
    var_ref->setDelta(5.0f);
    var_ref->setGamma(10.0f);
    var_ref->setSorIterations(25);
    var_ref->setFixedPointIterations(25);
    Mat flow(frame1.size(), CV_32FC2);
    flow.setTo(0.0f);
    var_ref->calc(frame1, frame2, flow);
    ASSERT_EQ(GT.rows, flow.rows);
    ASSERT_EQ(GT.cols, flow.cols);
    EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
}
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

TEST(DenseOpticalFlow_PCAFlow, ReferenceAccuracy)
{
    Mat frame1, frame2, GT;
    ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
    const float target_RMSE = 0.55f;

    Mat flow;
    Ptr<DenseOpticalFlow> algo = createOptFlow_PCAFlow();
    algo->calc(frame1, frame2, flow);
    ASSERT_EQ(GT.rows, flow.rows);
    ASSERT_EQ(GT.cols, flow.cols);
    EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
}

TEST(DenseOpticalFlow_GlobalPatchColliderDCT, ReferenceAccuracy)
{
    Mat frame1, frame2, GT;
    ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));

    const Size sz = frame1.size() / 2;
    frame1 = frame1(Rect(0, 0, sz.width, sz.height));
    frame2 = frame2(Rect(0, 0, sz.width, sz.height));
    GT = GT(Rect(0, 0, sz.width, sz.height));

    vector<Mat> img1, img2, gt;
    vector< pair<Point2i, Point2i> > corr;
    img1.push_back(frame1);
    img2.push_back(frame2);
    gt.push_back(GT);

    Ptr< GPCForest<5> > forest = GPCForest<5>::create();
    forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_DCT, false));
    forest->findCorrespondences(frame1, frame2, corr);

    ASSERT_LE(7500U, corr.size());
    ASSERT_LE(calcAvgEPE(corr, GT), 0.5f);
}

TEST(DenseOpticalFlow_GlobalPatchColliderWHT, ReferenceAccuracy)
{
    Mat frame1, frame2, GT;
    ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));

    const Size sz = frame1.size() / 2;
    frame1 = frame1(Rect(0, 0, sz.width, sz.height));
    frame2 = frame2(Rect(0, 0, sz.width, sz.height));
    GT = GT(Rect(0, 0, sz.width, sz.height));

    vector<Mat> img1, img2, gt;
    vector< pair<Point2i, Point2i> > corr;
    img1.push_back(frame1);
    img2.push_back(frame2);
    gt.push_back(GT);

    Ptr< GPCForest<5> > forest = GPCForest<5>::create();
    forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_WHT, false));
    forest->findCorrespondences(frame1, frame2, corr);

    ASSERT_LE(7000U, corr.size());
    ASSERT_LE(calcAvgEPE(corr, GT), 0.5f);
}