test_layers.cpp 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include <opencv2/core/ocl.hpp>
#include <iostream>
#include "npy_blob.hpp"
46
#include <opencv2/dnn/shape_utils.hpp>
47
#include <opencv2/dnn/all_layers.hpp>
48
#include <opencv2/ts/ocl_test.hpp>
49 50 51 52 53 54 55 56 57 58

namespace cvtest
{

using namespace cv;
using namespace cv::dnn;

template<typename TString>
static String _tf(TString filename)
{
59 60 61 62 63
    String basetestdir = getOpenCVExtraDir();
    size_t len = basetestdir.size();
    if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\')
        return (basetestdir + "/dnn/layers") + filename;
    return (basetestdir + "dnn/layers/") + filename;
64 65
}

66
void runLayer(Ptr<Layer> layer, std::vector<Mat> &inpBlobs, std::vector<Mat> &outBlobs)
67
{
68 69 70
    size_t i, ninputs = inpBlobs.size();
    std::vector<Mat> inp_(ninputs);
    std::vector<Mat*> inp(ninputs);
71 72
    std::vector<Mat> outp, intp;
    std::vector<MatShape> inputs, outputs, internals;
73

74 75 76 77
    for( i = 0; i < ninputs; i++ )
    {
        inp_[i] = inpBlobs[i].clone();
        inp[i] = &inp_[i];
78
        inputs.push_back(shape(inp_[i]));
79
    }
80

81 82 83 84 85 86 87 88 89 90 91 92
    layer->getMemoryShapes(inputs, 0, outputs, internals);
    for(int i = 0; i < outputs.size(); i++)
    {
        outp.push_back(Mat(outputs[i], CV_32F));
    }
    for(int i = 0; i < internals.size(); i++)
    {
        intp.push_back(Mat(internals[i], CV_32F));
    }

    layer->finalize(inp, outp);
    layer->forward(inp, outp, intp);
93

94 95 96 97
    size_t noutputs = outp.size();
    outBlobs.resize(noutputs);
    for( i = 0; i < noutputs; i++ )
        outBlobs[i] = outp[i];
98 99 100
}


101
void testLayerUsingCaffeModels(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true)
102 103 104 105 106 107 108
{
    String prototxt = _tf(basename + ".prototxt");
    String caffemodel = _tf(basename + ".caffemodel");

    String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
    String outfile = _tf(basename + ".npy");

109 110
    cv::setNumThreads(cv::getNumberOfCPUs());

111 112 113 114 115 116 117
    Net net;
    {
        Ptr<Importer> importer = createCaffeImporter(prototxt, (useCaffeModel) ? caffemodel : String());
        ASSERT_TRUE(importer != NULL);
        importer->populateNet(net);
    }

118 119
    Mat inp = blobFromNPY(inpfile);
    Mat ref = blobFromNPY(outfile);
120

121 122
    net.setInput(inp, "input");
    Mat out = net.forward("output");
123 124 125 126 127 128

    normAssert(ref, out);
}

TEST(Layer_Test_Softmax, Accuracy)
{
129
     testLayerUsingCaffeModels("layer_softmax");
130 131 132 133
}

TEST(Layer_Test_LRN_spatial, Accuracy)
{
134
     testLayerUsingCaffeModels("layer_lrn_spatial");
135 136 137 138
}

TEST(Layer_Test_LRN_channels, Accuracy)
{
139
     testLayerUsingCaffeModels("layer_lrn_channels");
140 141 142 143
}

TEST(Layer_Test_Convolution, Accuracy)
{
144
     testLayerUsingCaffeModels("layer_convolution", true);
145 146
}

147
TEST(Layer_Test_DeConvolution, Accuracy)
148
{
149
     testLayerUsingCaffeModels("layer_deconvolution", true, false);
150 151 152 153
}

TEST(Layer_Test_InnerProduct, Accuracy)
{
154
     testLayerUsingCaffeModels("layer_inner_product", true);
155 156 157 158
}

TEST(Layer_Test_Pooling_max, Accuracy)
{
159
     testLayerUsingCaffeModels("layer_pooling_max");
160 161 162 163
}

TEST(Layer_Test_Pooling_ave, Accuracy)
{
164
     testLayerUsingCaffeModels("layer_pooling_ave");
165 166 167 168
}

TEST(Layer_Test_MVN, Accuracy)
{
169
     testLayerUsingCaffeModels("layer_mvn");
170 171
}

172 173 174
void testReshape(const MatShape& inputShape, const MatShape& targetShape,
                 int axis = 0, int num_axes = -1, bool reorder_dims = false,
                 MatShape mask = MatShape())
175 176
{
    LayerParams params;
177 178 179 180 181 182 183
    params.set("axis", axis);
    params.set("num_axes", num_axes);
    params.set("reorder_dims", reorder_dims);
    if (!mask.empty())
    {
        params.set("dim", DictValue::arrayInt<int*>(&mask[0], mask.size()));
    }
184

185
    Mat inp(inputShape.size(), &inputShape[0], CV_32F);
186 187
    std::vector<Mat> inpVec(1, inp);
    std::vector<Mat> outVec, intVec;
188 189

    Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
190
    runLayer(rl, inpVec, outVec);
191

192
    Mat& out = outVec[0];
193
    MatShape shape(out.size.p, out.size.p + out.dims);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    EXPECT_EQ(shape, targetShape);
}

TEST(Layer_Test_Reshape, Accuracy)
{
    {
        int inp[] = {4, 3, 1, 2};
        int out[] = {4, 3, 2};
        testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1);
    }
    {
        int inp[] = {1, 128, 4, 4};
        int out[] = {1, 2048};
        int mask[] = {-1, 2048};
        testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1, true,
                    MatShape(mask, mask + 2));
    }
211 212
}

213 214
TEST(Layer_Test_BatchNorm, Accuracy)
{
215
     testLayerUsingCaffeModels("layer_batch_norm", true);
216 217
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
TEST(Layer_Test_ReLU, Accuracy)
{
     testLayerUsingCaffeModels("layer_relu");
}

TEST(Layer_Test_Dropout, Accuracy)
{
     testLayerUsingCaffeModels("layer_dropout");
}

TEST(Layer_Test_Concat, Accuracy)
{
     testLayerUsingCaffeModels("layer_concat");
}

233 234 235 236 237 238 239 240 241 242 243 244
//template<typename XMat>
//static void test_Layer_Concat()
//{
//    Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f);
//    std::vector<Blob> res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) };
//    Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f)));
//
//    runLayer(ConcatLayer::create(1), src, res);
//    normAssert(ref, res[0]);
//}
//TEST(Layer_Concat, Accuracy)
//{
245
//    test_Layer_Concat<Mat>());
246 247 248 249
//}
//OCL_TEST(Layer_Concat, Accuracy)
//{
//    OCL_ON(test_Layer_Concat<Mat>());
250
//    );
251
//}
252

253
static void test_Reshape_Split_Slice_layers()
254 255 256 257 258 259 260 261
{
    Net net;
    {
        Ptr<Importer> importer = createCaffeImporter(_tf("reshape_and_slice_routines.prototxt"));
        ASSERT_TRUE(importer != NULL);
        importer->populateNet(net);
    }

262
    Mat input(6, 12, CV_32F);
263
    RNG rng(0);
264
    rng.fill(input, RNG::UNIFORM, -1, 1);
265

266 267
    net.setInput(input, "input");
    Mat output = net.forward("output");
268 269 270

    normAssert(input, output);
}
271
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
272
{
273
    test_Reshape_Split_Slice_layers();
274 275
}

276 277 278
class Layer_LSTM_Test : public ::testing::Test
{
public:
279
    int numInp, numOut;
280
    Mat Wh, Wx, b;
281
    Ptr<LSTMLayer> layer;
282
    std::vector<Mat> inputs, outputs;
283

284 285
    Layer_LSTM_Test() {}

286
    void init(const MatShape &inpShape_, const MatShape &outShape_)
287
    {
288 289
        numInp = total(inpShape_);
        numOut = total(outShape_);
290

291 292 293
        Wh = Mat::ones(4 * numOut, numOut, CV_32F);
        Wx = Mat::ones(4 * numOut, numInp, CV_32F);
        b  = Mat::ones(4 * numOut, 1, CV_32F);
294

295
        layer = LSTMLayer::create(LayerParams());
296
        layer->setWeights(Wh, Wx, b);
297
        layer->setOutShape(outShape_);
298 299 300
    }
};

301
TEST_F(Layer_LSTM_Test, get_set_test)
302
{
303
    const int TN = 4;
304 305 306 307
    MatShape inpShape = shape(5, 3, 2);
    MatShape outShape = shape(3, 1, 2);
    MatShape inpResShape = concat(shape(TN), inpShape);
    MatShape outResShape = concat(shape(TN), outShape);
308

309 310 311 312
    init(inpShape, outShape);
    layer->setProduceCellOutput(true);
    layer->setUseTimstampsDim(false);
    layer->setOutShape(outShape);
313

314 315 316 317
    Mat C((int)outResShape.size(), &outResShape[0], CV_32F);
    randu(C, -1., 1.);
    Mat H = C.clone();
    randu(H, -1., 1.);
318

319 320 321 322
    Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F);
    randu(inp, -1., 1.);

    inputs.push_back(inp);
323 324
    runLayer(layer, inputs, outputs);

325
    EXPECT_EQ(2u, outputs.size());
326

327 328 329
    print(outResShape, "outResShape");
    print(shape(outputs[0]), "out0");
    print(shape(outputs[0]), "out1");
330

331 332
    EXPECT_EQ(outResShape, shape(outputs[0]));
    EXPECT_EQ(outResShape, shape(outputs[1]));
333 334 335 336

    EXPECT_EQ(0, layer->inputNameToIndex("x"));
    EXPECT_EQ(0, layer->outputNameToIndex("h"));
    EXPECT_EQ(1, layer->outputNameToIndex("c"));
337 338
}

339
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent)
340
{
341
    Ptr<LSTMLayer> layer = LSTMLayer::create(LayerParams());
342

343 344 345
    Mat Wx = blobFromNPY(_tf("lstm.prototxt.w_0.npy"));
    Mat Wh = blobFromNPY(_tf("lstm.prototxt.w_2.npy"));
    Mat b  = blobFromNPY(_tf("lstm.prototxt.w_1.npy"));
346 347
    layer->setWeights(Wh, Wx, b);

348 349
    Mat inp = blobFromNPY(_tf("recurrent.input.npy"));
    std::vector<Mat> inputs(1, inp), outputs;
350
    runLayer(layer, inputs, outputs);
351

352
    Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy"));
353 354 355 356 357
    normAssert(h_t_reference, outputs[0]);
}

TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent)
{
358
    Ptr<RNNLayer> layer = RNNLayer::create(LayerParams());
359 360 361 362 363 364 365

    layer->setWeights(
                blobFromNPY(_tf("rnn.prototxt.w_0.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_1.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_2.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_3.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_4.npy")) );
366

367
    std::vector<Mat> output, input(1, blobFromNPY(_tf("recurrent.input.npy")));
368 369
    runLayer(layer, input, output);

370
    Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy"));
371
    normAssert(h_ref, output[0]);
372 373
}

374 375 376 377

class Layer_RNN_Test : public ::testing::Test
{
public:
378
    int nX, nH, nO, nT, nS;
379
    Mat Whh, Wxh, bh, Who, bo;
380 381
    Ptr<RNNLayer> layer;

382
    std::vector<Mat> inputs, outputs;
383

384
    Layer_RNN_Test()
385
    {
386 387 388 389 390 391
        nT = 3;
        nS = 5;
        nX = 31;
        nH = 64;
        nO = 100;

392 393 394 395 396
        Whh = Mat::ones(nH, nH, CV_32F);
        Wxh = Mat::ones(nH, nX, CV_32F);
        bh  = Mat::ones(nH, 1, CV_32F);
        Who = Mat::ones(nO, nH, CV_32F);
        bo  = Mat::ones(nO, 1, CV_32F);
397

398
        layer = RNNLayer::create(LayerParams());
399 400
        layer->setProduceHiddenOutput(true);
        layer->setWeights(Wxh, bh, Whh, Who, bo);
401 402 403
    }
};

404
TEST_F(Layer_RNN_Test, get_set_test)
405
{
406 407 408 409
    int sz[] = { nT, nS, 1, nX };
    Mat inp(4, sz, CV_32F);
    randu(inp, -1., 1.);
    inputs.push_back(inp);
410
    runLayer(layer, inputs, outputs);
411

412
    EXPECT_EQ(outputs.size(), 2u);
413 414
    EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO));
    EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH));
415 416
}

417
}