gtrTracker.cpp 7.18 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "gtrTracker.hpp"


namespace cv
{

TrackerGOTURN::Params::Params(){}

void TrackerGOTURN::Params::read(const cv::FileNode& /*fn*/){}

void TrackerGOTURN::Params::write(cv::FileStorage& /*fs*/) const {}


Ptr<TrackerGOTURN> TrackerGOTURN::createTracker(const TrackerGOTURN::Params &parameters)
{
    return Ptr<gtr::TrackerGOTURNImpl>(new gtr::TrackerGOTURNImpl(parameters));
}

namespace gtr
{

class TrackerGOTURNModel : public TrackerModel{
public:
    TrackerGOTURNModel(TrackerGOTURN::Params){}
    Rect2d getBoundingBox(){ return boundingBox_; }
    void setBoudingBox(Rect2d boundingBox){ boundingBox_ = boundingBox; }
    Mat getImage(){ return image_; }
    void setImage(const Mat& image){ image.copyTo(image_); }
protected:
    Rect2d boundingBox_;
    Mat image_;
    void modelEstimationImpl(const std::vector<Mat>&){}
    void modelUpdateImpl(){}
};

TrackerGOTURNImpl::TrackerGOTURNImpl(const TrackerGOTURN::Params &parameters) :
    params(parameters){
    isInit = false;
};

void TrackerGOTURNImpl::read(const cv::FileNode& fn)
{
    params.read(fn);
}

void TrackerGOTURNImpl::write(cv::FileStorage& fs) const
{
    params.write(fs);
}

bool TrackerGOTURNImpl::initImpl(const Mat& image, const Rect2d& boundingBox)
{
    //Make a simple model from frame and bounding box
    model = Ptr<TrackerGOTURNModel>(new TrackerGOTURNModel(params));
    ((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->setImage(image);
    ((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->setBoudingBox(boundingBox);

    //Load GOTURN architecture from *.prototxt and pretrained weights from *.caffemodel
    String modelTxt = "goturn.prototxt";
    String modelBin = "goturn.caffemodel";
    Ptr<dnn::Importer> importer;
    try                                     //Import GOTURN model
    {
        importer = dnn::createCaffeImporter(modelTxt, modelBin);
    }
    catch (const cv::Exception &err)        //Importer can throw errors, we will catch them
    {
        std::cerr << err.msg << std::endl;
    }
    if (!importer)
    {
        cvError(CV_StsError, "cv::gtr::InitImpl", "GOTURN network loading error...", "gtrTracker.cpp", 117);
    }

    importer->populateNet(net);
    importer.release();                     //We don't need importer anymore

    return true;
}

bool TrackerGOTURNImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
{
    int INPUT_SIZE = 227;
    //Using prevFrame & prevBB from model and curFrame GOTURN calculating curBB
    Mat curFrame = image.clone();
    Mat prevFrame = ((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->getImage();
    Rect2d prevBB = ((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->getBoundingBox();
    Rect2d curBB;

    float padTargetPatch = 2.0;
    Rect2f searchPatchRect, targetPatchRect;
    Point2f currCenter, prevCenter;
    Mat prevFramePadded, curFramePadded;
    Mat searchPatch, targetPatch;

    prevCenter.x = (float)(prevBB.x + prevBB.width / 2);
    prevCenter.y = (float)(prevBB.y + prevBB.height / 2);

    targetPatchRect.width = (float)(prevBB.width*padTargetPatch);
    targetPatchRect.height = (float)(prevBB.height*padTargetPatch);
    targetPatchRect.x = (float)(prevCenter.x - prevBB.width*padTargetPatch / 2.0 + targetPatchRect.width);
    targetPatchRect.y = (float)(prevCenter.y - prevBB.height*padTargetPatch / 2.0 + targetPatchRect.height);

    copyMakeBorder(prevFrame, prevFramePadded, (int)targetPatchRect.height, (int)targetPatchRect.height, (int)targetPatchRect.width, (int)targetPatchRect.width, BORDER_REPLICATE);
    targetPatch = prevFramePadded(targetPatchRect).clone();

    copyMakeBorder(curFrame, curFramePadded, (int)targetPatchRect.height, (int)targetPatchRect.height, (int)targetPatchRect.width, (int)targetPatchRect.width, BORDER_REPLICATE);
    searchPatch = curFramePadded(targetPatchRect).clone();

    //Preprocess
    //Resize
    resize(targetPatch, targetPatch, Size(INPUT_SIZE, INPUT_SIZE));
    resize(searchPatch, searchPatch, Size(INPUT_SIZE, INPUT_SIZE));

    //Mean Subtract
    targetPatch = targetPatch - 128;
    searchPatch = searchPatch - 128;

    //Convert to Float type
    targetPatch.convertTo(targetPatch, CV_32F);
    searchPatch.convertTo(searchPatch, CV_32F);

    dnn::Blob targetBlob = dnn::Blob(targetPatch);
    dnn::Blob searchBlob = dnn::Blob(searchPatch);

    net.setBlob(".data1", targetBlob);
    net.setBlob(".data2", searchBlob);

    net.forward();
    dnn::Blob res = net.getBlob("scale");

    Mat resMat = res.matRefConst().reshape(1, 1);

    curBB.x = targetPatchRect.x + (resMat.at<float>(0) * targetPatchRect.width / INPUT_SIZE) - targetPatchRect.width;
    curBB.y = targetPatchRect.y + (resMat.at<float>(1) * targetPatchRect.height / INPUT_SIZE) - targetPatchRect.height;
    curBB.width = (resMat.at<float>(2) - resMat.at<float>(0)) * targetPatchRect.width / INPUT_SIZE;
    curBB.height = (resMat.at<float>(3) - resMat.at<float>(1)) * targetPatchRect.height / INPUT_SIZE;

    //Predicted BB
    boundingBox = curBB;

    //Set new model image and BB from current frame
    ((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->setImage(curFrame);
    ((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->setBoudingBox(curBB);
    return true;
}

}

}