retina_ocl.cpp 74.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other oclMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "retina_ocl.hpp"
#include <iostream>
#include <sstream>

#ifdef HAVE_OPENCV_OCL

#include "opencl_kernels.hpp"

#define NOT_IMPLEMENTED CV_Error(cv::Error::StsNotImplemented, "Not implemented")

namespace cv
{
static ocl::ProgramEntry retina_kernel = ocl::bioinspired::retina_kernel;

namespace bioinspired
{
namespace ocl
{
using namespace cv::ocl;

class RetinaOCLImpl : public Retina
{
public:
    RetinaOCLImpl(Size getInputSize);
    RetinaOCLImpl(Size getInputSize, const bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0);
    virtual ~RetinaOCLImpl();

    Size getInputSize();
    Size getOutputSize();

    void setup(String retinaParameterFile = "", const bool applyDefaultSetupOnFailure = true);
    void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure = true);
    void setup(RetinaParameters newParameters);

    RetinaOCLImpl::RetinaParameters getParameters();

    const String printSetup();
    virtual void write( String fs ) const;
    virtual void write( FileStorage& fs ) const;

    void setupOPLandIPLParvoChannel(const bool colorMode = true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity = 0.7, const float photoreceptorsTemporalConstant = 0.5, const float photoreceptorsSpatialConstant = 0.53, const float horizontalCellsGain = 0, const float HcellsTemporalConstant = 1, const float HcellsSpatialConstant = 7, const float ganglionCellsSensitivity = 0.7);
    void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta = 0, const float parasolCells_tau = 0, const float parasolCells_k = 7, const float amacrinCellsTemporalCutFrequency = 1.2, const float V0CompressionParameter = 0.95, const float localAdaptintegration_tau = 0, const float localAdaptintegration_k = 7);

    void run(InputArray inputImage);
    void getParvo(OutputArray retinaOutput_parvo);
    void getMagno(OutputArray retinaOutput_magno);

    void setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0);
    void clearBuffers();
    void activateMovingContoursProcessing(const bool activate);
    void activateContoursProcessing(const bool activate);

    // unimplemented interfaces:
    void applyFastToneMapping(InputArray /*inputImage*/, OutputArray /*outputToneMappedImage*/) { NOT_IMPLEMENTED; }
    void getParvoRAW(OutputArray /*retinaOutput_parvo*/) { NOT_IMPLEMENTED; }
    void getMagnoRAW(OutputArray /*retinaOutput_magno*/) { NOT_IMPLEMENTED; }
    const Mat getMagnoRAW() const { NOT_IMPLEMENTED; return Mat(); }
    const Mat getParvoRAW() const { NOT_IMPLEMENTED; return Mat(); }

protected:
    RetinaParameters _retinaParameters;
    cv::ocl::oclMat _inputBuffer;
    RetinaFilter* _retinaFilter;
    bool convertToColorPlanes(const cv::ocl::oclMat& input, cv::ocl::oclMat &output);
    void convertToInterleaved(const cv::ocl::oclMat& input, bool colorMode, cv::ocl::oclMat &output);
    void _init(const Size getInputSize, const bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0);
};

RetinaOCLImpl::RetinaOCLImpl(const cv::Size inputSz)
{
    _retinaFilter = 0;
    _init(inputSz, true, RETINA_COLOR_BAYER, false);
}

RetinaOCLImpl::RetinaOCLImpl(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
    _retinaFilter = 0;
    _init(inputSz, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
}

RetinaOCLImpl::~RetinaOCLImpl()
{
    if (_retinaFilter)
    {
        delete _retinaFilter;
    }
}

/**
* retreive retina input buffer size
*/
Size RetinaOCLImpl::getInputSize()
{
    return cv::Size(_retinaFilter->getInputNBcolumns(), _retinaFilter->getInputNBrows());
}

/**
* retreive retina output buffer size
*/
Size RetinaOCLImpl::getOutputSize()
{
    return cv::Size(_retinaFilter->getOutputNBcolumns(), _retinaFilter->getOutputNBrows());
}


void RetinaOCLImpl::setColorSaturation(const bool saturateColors, const float colorSaturationValue)
{
    _retinaFilter->setColorSaturation(saturateColors, colorSaturationValue);
}

struct RetinaOCLImpl::RetinaParameters RetinaOCLImpl::getParameters()
{
    return _retinaParameters;
}


void RetinaOCLImpl::setup(String retinaParameterFile, const bool applyDefaultSetupOnFailure)
{
    try
    {
        // opening retinaParameterFile in read mode
        cv::FileStorage fs(retinaParameterFile, cv::FileStorage::READ);
        setup(fs, applyDefaultSetupOnFailure);
    }
    catch(Exception &e)
    {
        std::cout << "RetinaOCLImpl::setup: wrong/unappropriate xml parameter file : error report :`n=>" << e.what() << std::endl;
        if (applyDefaultSetupOnFailure)
        {
            std::cout << "RetinaOCLImpl::setup: resetting retina with default parameters" << std::endl;
            setupOPLandIPLParvoChannel();
            setupIPLMagnoChannel();
        }
        else
        {
            std::cout << "=> keeping current parameters" << std::endl;
        }
    }
}

void RetinaOCLImpl::setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure)
{
    try
    {
        // read parameters file if it exists or apply default setup if asked for
        if (!fs.isOpened())
        {
            std::cout << "RetinaOCLImpl::setup: provided parameters file could not be open... skeeping configuration" << std::endl;
            return;
            // implicit else case : retinaParameterFile could be open (it exists at least)
        }
        // OPL and Parvo init first... update at the same time the parameters structure and the retina core
        cv::FileNode rootFn = fs.root(), currFn = rootFn["OPLandIPLparvo"];
        currFn["colorMode"] >> _retinaParameters.OPLandIplParvo.colorMode;
        currFn["normaliseOutput"] >> _retinaParameters.OPLandIplParvo.normaliseOutput;
        currFn["photoreceptorsLocalAdaptationSensitivity"] >> _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity;
        currFn["photoreceptorsTemporalConstant"] >> _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant;
        currFn["photoreceptorsSpatialConstant"] >> _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant;
        currFn["horizontalCellsGain"] >> _retinaParameters.OPLandIplParvo.horizontalCellsGain;
        currFn["hcellsTemporalConstant"] >> _retinaParameters.OPLandIplParvo.hcellsTemporalConstant;
        currFn["hcellsSpatialConstant"] >> _retinaParameters.OPLandIplParvo.hcellsSpatialConstant;
        currFn["ganglionCellsSensitivity"] >> _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity;
        setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);

        // init retina IPL magno setup... update at the same time the parameters structure and the retina core
        currFn = rootFn["IPLmagno"];
        currFn["normaliseOutput"] >> _retinaParameters.IplMagno.normaliseOutput;
        currFn["parasolCells_beta"] >> _retinaParameters.IplMagno.parasolCells_beta;
        currFn["parasolCells_tau"] >> _retinaParameters.IplMagno.parasolCells_tau;
        currFn["parasolCells_k"] >> _retinaParameters.IplMagno.parasolCells_k;
        currFn["amacrinCellsTemporalCutFrequency"] >> _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency;
        currFn["V0CompressionParameter"] >> _retinaParameters.IplMagno.V0CompressionParameter;
        currFn["localAdaptintegration_tau"] >> _retinaParameters.IplMagno.localAdaptintegration_tau;
        currFn["localAdaptintegration_k"] >> _retinaParameters.IplMagno.localAdaptintegration_k;

        setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency, _retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);

    }
    catch(Exception &e)
    {
        std::cout << "RetinaOCLImpl::setup: resetting retina with default parameters" << std::endl;
        if (applyDefaultSetupOnFailure)
        {
            setupOPLandIPLParvoChannel();
            setupIPLMagnoChannel();
        }
        std::cout << "RetinaOCLImpl::setup: wrong/unappropriate xml parameter file : error report :`n=>" << e.what() << std::endl;
        std::cout << "=> keeping current parameters" << std::endl;
    }
}

void RetinaOCLImpl::setup(cv::bioinspired::Retina::RetinaParameters newConfiguration)
{
    // simply copy structures
    memcpy(&_retinaParameters, &newConfiguration, sizeof(cv::bioinspired::Retina::RetinaParameters));
    // apply setup
    setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);
    setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency, _retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);
}

const String RetinaOCLImpl::printSetup()
{
    std::stringstream outmessage;

    // displaying OPL and IPL parvo setup
    outmessage << "Current Retina instance setup :"
               << "\nOPLandIPLparvo" << "{"
               << "\n==> colorMode : " << _retinaParameters.OPLandIplParvo.colorMode
               << "\n==> normalizeParvoOutput :" << _retinaParameters.OPLandIplParvo.normaliseOutput
               << "\n==> photoreceptorsLocalAdaptationSensitivity : " << _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity
               << "\n==> photoreceptorsTemporalConstant : " << _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant
               << "\n==> photoreceptorsSpatialConstant : " << _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant
               << "\n==> horizontalCellsGain : " << _retinaParameters.OPLandIplParvo.horizontalCellsGain
               << "\n==> hcellsTemporalConstant : " << _retinaParameters.OPLandIplParvo.hcellsTemporalConstant
               << "\n==> hcellsSpatialConstant : " << _retinaParameters.OPLandIplParvo.hcellsSpatialConstant
               << "\n==> parvoGanglionCellsSensitivity : " << _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity
               << "}\n";

    // displaying IPL magno setup
    outmessage << "Current Retina instance setup :"
               << "\nIPLmagno" << "{"
               << "\n==> normaliseOutput : " << _retinaParameters.IplMagno.normaliseOutput
               << "\n==> parasolCells_beta : " << _retinaParameters.IplMagno.parasolCells_beta
               << "\n==> parasolCells_tau : " << _retinaParameters.IplMagno.parasolCells_tau
               << "\n==> parasolCells_k : " << _retinaParameters.IplMagno.parasolCells_k
               << "\n==> amacrinCellsTemporalCutFrequency : " << _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency
               << "\n==> V0CompressionParameter : " << _retinaParameters.IplMagno.V0CompressionParameter
               << "\n==> localAdaptintegration_tau : " << _retinaParameters.IplMagno.localAdaptintegration_tau
               << "\n==> localAdaptintegration_k : " << _retinaParameters.IplMagno.localAdaptintegration_k
               << "}";
    return outmessage.str().c_str();
}

void RetinaOCLImpl::write( String fs ) const
{
    FileStorage parametersSaveFile(fs, cv::FileStorage::WRITE );
    write(parametersSaveFile);
}

void RetinaOCLImpl::write( FileStorage& fs ) const
{
    if (!fs.isOpened())
    {
        return;    // basic error case
    }
    fs << "OPLandIPLparvo" << "{";
    fs << "colorMode" << _retinaParameters.OPLandIplParvo.colorMode;
    fs << "normaliseOutput" << _retinaParameters.OPLandIplParvo.normaliseOutput;
    fs << "photoreceptorsLocalAdaptationSensitivity" << _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity;
    fs << "photoreceptorsTemporalConstant" << _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant;
    fs << "photoreceptorsSpatialConstant" << _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant;
    fs << "horizontalCellsGain" << _retinaParameters.OPLandIplParvo.horizontalCellsGain;
    fs << "hcellsTemporalConstant" << _retinaParameters.OPLandIplParvo.hcellsTemporalConstant;
    fs << "hcellsSpatialConstant" << _retinaParameters.OPLandIplParvo.hcellsSpatialConstant;
    fs << "ganglionCellsSensitivity" << _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity;
    fs << "}";
    fs << "IPLmagno" << "{";
    fs << "normaliseOutput" << _retinaParameters.IplMagno.normaliseOutput;
    fs << "parasolCells_beta" << _retinaParameters.IplMagno.parasolCells_beta;
    fs << "parasolCells_tau" << _retinaParameters.IplMagno.parasolCells_tau;
    fs << "parasolCells_k" << _retinaParameters.IplMagno.parasolCells_k;
    fs << "amacrinCellsTemporalCutFrequency" << _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency;
    fs << "V0CompressionParameter" << _retinaParameters.IplMagno.V0CompressionParameter;
    fs << "localAdaptintegration_tau" << _retinaParameters.IplMagno.localAdaptintegration_tau;
    fs << "localAdaptintegration_k" << _retinaParameters.IplMagno.localAdaptintegration_k;
    fs << "}";
}

void RetinaOCLImpl::setupOPLandIPLParvoChannel(const bool colorMode, const bool normaliseOutput, const float photoreceptorsLocalAdaptationSensitivity, const float photoreceptorsTemporalConstant, const float photoreceptorsSpatialConstant, const float horizontalCellsGain, const float HcellsTemporalConstant, const float HcellsSpatialConstant, const float ganglionCellsSensitivity)
{
    // retina core parameters setup
    _retinaFilter->setColorMode(colorMode);
    _retinaFilter->setPhotoreceptorsLocalAdaptationSensitivity(photoreceptorsLocalAdaptationSensitivity);
    _retinaFilter->setOPLandParvoParameters(0, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant, ganglionCellsSensitivity);
    _retinaFilter->setParvoGanglionCellsLocalAdaptationSensitivity(ganglionCellsSensitivity);
    _retinaFilter->activateNormalizeParvoOutput_0_maxOutputValue(normaliseOutput);

    // update parameters struture

    _retinaParameters.OPLandIplParvo.colorMode = colorMode;
    _retinaParameters.OPLandIplParvo.normaliseOutput = normaliseOutput;
    _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity = photoreceptorsLocalAdaptationSensitivity;
    _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant = photoreceptorsTemporalConstant;
    _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant = photoreceptorsSpatialConstant;
    _retinaParameters.OPLandIplParvo.horizontalCellsGain = horizontalCellsGain;
    _retinaParameters.OPLandIplParvo.hcellsTemporalConstant = HcellsTemporalConstant;
    _retinaParameters.OPLandIplParvo.hcellsSpatialConstant = HcellsSpatialConstant;
    _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity = ganglionCellsSensitivity;
}

void RetinaOCLImpl::setupIPLMagnoChannel(const bool normaliseOutput, const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float V0CompressionParameter, const float localAdaptintegration_tau, const float localAdaptintegration_k)
{

    _retinaFilter->setMagnoCoefficientsTable(parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k);
    _retinaFilter->activateNormalizeMagnoOutput_0_maxOutputValue(normaliseOutput);

    // update parameters struture
    _retinaParameters.IplMagno.normaliseOutput = normaliseOutput;
    _retinaParameters.IplMagno.parasolCells_beta = parasolCells_beta;
    _retinaParameters.IplMagno.parasolCells_tau = parasolCells_tau;
    _retinaParameters.IplMagno.parasolCells_k = parasolCells_k;
    _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency = amacrinCellsTemporalCutFrequency;
    _retinaParameters.IplMagno.V0CompressionParameter = V0CompressionParameter;
    _retinaParameters.IplMagno.localAdaptintegration_tau = localAdaptintegration_tau;
    _retinaParameters.IplMagno.localAdaptintegration_k = localAdaptintegration_k;
}

354
void RetinaOCLImpl::run(InputArray input)
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
{
    oclMat &inputMatToConvert = getOclMatRef(input);
    bool colorMode = convertToColorPlanes(inputMatToConvert, _inputBuffer);
    // first convert input image to the compatible format : std::valarray<float>
    // process the retina
    if (!_retinaFilter->runFilter(_inputBuffer, colorMode, false, _retinaParameters.OPLandIplParvo.colorMode && colorMode, false))
    {
        throw cv::Exception(-1, "Retina cannot be applied, wrong input buffer size", "RetinaOCLImpl::run", "Retina.h", 0);
    }
}

void RetinaOCLImpl::getParvo(OutputArray output)
{
    oclMat &retinaOutput_parvo = getOclMatRef(output);
    if (_retinaFilter->getColorMode())
    {
        // reallocate output buffer (if necessary)
        convertToInterleaved(_retinaFilter->getColorOutput(), true, retinaOutput_parvo);
    }
    else
    {
        // reallocate output buffer (if necessary)
        convertToInterleaved(_retinaFilter->getContours(), false, retinaOutput_parvo);
    }
    //retinaOutput_parvo/=255.0;
}
void RetinaOCLImpl::getMagno(OutputArray output)
{
    oclMat &retinaOutput_magno = getOclMatRef(output);
    // reallocate output buffer (if necessary)
    convertToInterleaved(_retinaFilter->getMovingContours(), false, retinaOutput_magno);
    //retinaOutput_magno/=255.0;
}
// private method called by constructirs
void RetinaOCLImpl::_init(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
    // basic error check
    if (inputSz.height*inputSz.width <= 0)
    {
        throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "RetinaOCLImpl::setup", "Retina.h", 0);
    }

    // allocate the retina model
    if (_retinaFilter)
    {
        delete _retinaFilter;
    }
    _retinaFilter = new RetinaFilter(inputSz.height, inputSz.width, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);

    // prepare the default parameter XML file with default setup
    setup(_retinaParameters);

    // init retina
    _retinaFilter->clearAllBuffers();
}

bool RetinaOCLImpl::convertToColorPlanes(const oclMat& input, oclMat &output)
{
    oclMat convert_input;
    input.convertTo(convert_input, CV_32F);
    if(convert_input.channels() == 3 || convert_input.channels() == 4)
    {
        ocl::ensureSizeIsEnough(int(_retinaFilter->getInputNBrows() * 4),
                                int(_retinaFilter->getInputNBcolumns()), CV_32FC1, output);
        oclMat channel_splits[4] =
        {
            output(Rect(Point(0, _retinaFilter->getInputNBrows() * 2), getInputSize())),
            output(Rect(Point(0, _retinaFilter->getInputNBrows()), getInputSize())),
            output(Rect(Point(0, 0), getInputSize())),
            output(Rect(Point(0, _retinaFilter->getInputNBrows() * 3), getInputSize()))
        };
        ocl::split(convert_input, channel_splits);
        return true;
    }
    else if(convert_input.channels() == 1)
    {
        convert_input.copyTo(output);
        return false;
    }
    else
    {
        CV_Error(-1, "Retina ocl only support 1, 3, 4 channel input");
        return false;
    }
}
void RetinaOCLImpl::convertToInterleaved(const oclMat& input, bool colorMode, oclMat &output)
{
    input.convertTo(output, CV_8U);
    if(colorMode)
    {
        int numOfSplits = input.rows / getInputSize().height;
        std::vector<oclMat> channel_splits(numOfSplits);
        for(int i = 0; i < static_cast<int>(channel_splits.size()); i ++)
        {
            channel_splits[i] =
                output(Rect(Point(0, _retinaFilter->getInputNBrows() * (numOfSplits - i - 1)), getInputSize()));
        }
        merge(channel_splits, output);
    }
    else
    {
        //...
    }
}

void RetinaOCLImpl::clearBuffers()
{
    _retinaFilter->clearAllBuffers();
}

void RetinaOCLImpl::activateMovingContoursProcessing(const bool activate)
{
    _retinaFilter->activateMovingContoursProcessing(activate);
}

void RetinaOCLImpl::activateContoursProcessing(const bool activate)
{
    _retinaFilter->activateContoursProcessing(activate);
}

///////////////////////////////////////
///////// BasicRetinaFilter ///////////
///////////////////////////////////////
BasicRetinaFilter::BasicRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns, const unsigned int parametersListSize, const bool)
    : _NBrows(NBrows), _NBcols(NBcolumns),
      _filterOutput(NBrows, NBcolumns, CV_32FC1),
      _localBuffer(NBrows, NBcolumns, CV_32FC1),
      _filteringCoeficientsTable(3 * parametersListSize)
{
    _halfNBrows = _filterOutput.rows / 2;
    _halfNBcolumns = _filterOutput.cols / 2;

    // set default values
    _maxInputValue = 256.0;

    // reset all buffers
    clearAllBuffers();
}

BasicRetinaFilter::~BasicRetinaFilter()
{
}

void BasicRetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
    // resizing buffers
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _filterOutput);

    // updating variables
    _halfNBrows = _filterOutput.rows / 2;
    _halfNBcolumns = _filterOutput.cols / 2;

    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _localBuffer);
    // reset buffers
    clearAllBuffers();
}

void BasicRetinaFilter::setLPfilterParameters(const float beta, const float tau, const float desired_k, const unsigned int filterIndex)
{
    float _beta = beta + tau;
    float k = desired_k;
    // check if the spatial constant is correct (avoid 0 value to avoid division by 0)
    if (desired_k <= 0)
    {
        k = 0.001f;
        std::cerr << "BasicRetinaFilter::spatial constant of the low pass filter must be superior to zero !!! correcting parameter setting to 0,001" << std::endl;
    }

    float _alpha = k * k;
    float _mu = 0.8f;
    unsigned int tableOffset = filterIndex * 3;
    if (k <= 0)
    {
        std::cerr << "BasicRetinaFilter::spatial filtering coefficient must be superior to zero, correcting value to 0.01" << std::endl;
        _alpha = 0.0001f;
    }

    float _temp =  (1.0f + _beta) / (2.0f * _mu * _alpha);
    float a = _filteringCoeficientsTable[tableOffset] = 1.0f + _temp - (float)sqrt( (1.0f + _temp) * (1.0f + _temp) - 1.0f);
    _filteringCoeficientsTable[1 + tableOffset] = (1.0f - a) * (1.0f - a) * (1.0f - a) * (1.0f - a) / (1.0f + _beta);
    _filteringCoeficientsTable[2 + tableOffset] = tau;
}
const oclMat &BasicRetinaFilter::runFilter_LocalAdapdation(const oclMat &inputFrame, const oclMat &localLuminance)
{
    _localLuminanceAdaptation(inputFrame, localLuminance, _filterOutput);
    return _filterOutput;
}


void BasicRetinaFilter::runFilter_LocalAdapdation(const oclMat &inputFrame, const oclMat &localLuminance, oclMat &outputFrame)
{
    _localLuminanceAdaptation(inputFrame, localLuminance, outputFrame);
}

const oclMat &BasicRetinaFilter::runFilter_LocalAdapdation_autonomous(const oclMat &inputFrame)
{
    _spatiotemporalLPfilter(inputFrame, _filterOutput);
    _localLuminanceAdaptation(inputFrame, _filterOutput, _filterOutput);
    return _filterOutput;
}
void BasicRetinaFilter::runFilter_LocalAdapdation_autonomous(const oclMat &inputFrame, oclMat &outputFrame)
{
    _spatiotemporalLPfilter(inputFrame, _filterOutput);
    _localLuminanceAdaptation(inputFrame, _filterOutput, outputFrame);
}

void BasicRetinaFilter::_localLuminanceAdaptation(oclMat &inputOutputFrame, const oclMat &localLuminance)
{
    _localLuminanceAdaptation(inputOutputFrame, localLuminance, inputOutputFrame, false);
}

void BasicRetinaFilter::_localLuminanceAdaptation(const oclMat &inputFrame, const oclMat &localLuminance, oclMat &outputFrame, const bool updateLuminanceMean)
{
    if (updateLuminanceMean)
    {
        float meanLuminance = saturate_cast<float>(ocl::sum(inputFrame)[0]) / getNBpixels();
        updateCompressionParameter(meanLuminance);
    }
    int elements_per_row = static_cast<int>(inputFrame.step / inputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBcols, _NBrows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &localLuminance.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &inputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBrows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &_localLuminanceAddon));
    args.push_back(std::make_pair(sizeof(cl_float), &_localLuminanceFactor));
    args.push_back(std::make_pair(sizeof(cl_float), &_maxInputValue));
    openCLExecuteKernel(ctx, &retina_kernel, "localLuminanceAdaptation", globalSize, localSize, args, -1, -1);
}

const oclMat &BasicRetinaFilter::runFilter_LPfilter(const oclMat &inputFrame, const unsigned int filterIndex)
{
    _spatiotemporalLPfilter(inputFrame, _filterOutput, filterIndex);
    return _filterOutput;
}
void BasicRetinaFilter::runFilter_LPfilter(const oclMat &inputFrame, oclMat &outputFrame, const unsigned int filterIndex)
{
    _spatiotemporalLPfilter(inputFrame, outputFrame, filterIndex);
}

void BasicRetinaFilter::_spatiotemporalLPfilter(const oclMat &inputFrame, oclMat &LPfilterOutput, const unsigned int filterIndex)
{
    unsigned int coefTableOffset = filterIndex * 3;

    _a = _filteringCoeficientsTable[coefTableOffset];
    _gain = _filteringCoeficientsTable[1 + coefTableOffset];
    _tau = _filteringCoeficientsTable[2 + coefTableOffset];

    _horizontalCausalFilter_addInput(inputFrame, LPfilterOutput);
    _horizontalAnticausalFilter(LPfilterOutput);
    _verticalCausalFilter(LPfilterOutput);
    _verticalAnticausalFilter_multGain(LPfilterOutput);
}

void BasicRetinaFilter::_horizontalCausalFilter_addInput(const oclMat &inputFrame, oclMat &outputFrame)
{
    int elements_per_row = static_cast<int>(inputFrame.step / inputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBrows, 1, 1};
    size_t localSize[]  = {256, 1, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &inputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBrows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_int),   &inputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_int),   &inputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_float), &_tau));
    args.push_back(std::make_pair(sizeof(cl_float), &_a));
    openCLExecuteKernel(ctx, &retina_kernel, "horizontalCausalFilter_addInput", globalSize, localSize, args, -1, -1);
}

void BasicRetinaFilter::_horizontalAnticausalFilter(oclMat &outputFrame)
{
    int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBrows, 1, 1};
    size_t localSize[]  = {256, 1, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBrows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_float), &_a));
    openCLExecuteKernel(ctx, &retina_kernel, "horizontalAnticausalFilter", globalSize, localSize, args, -1, -1);
}

void BasicRetinaFilter::_verticalCausalFilter(oclMat &outputFrame)
{
    int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBcols, 1, 1};
    size_t localSize[]  = {256, 1, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBrows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_float), &_a));
    openCLExecuteKernel(ctx, &retina_kernel, "verticalCausalFilter", globalSize, localSize, args, -1, -1);
}

void BasicRetinaFilter::_verticalAnticausalFilter_multGain(oclMat &outputFrame)
{
    int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBcols, 1, 1};
    size_t localSize[]  = {256, 1, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBrows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_float), &_a));
    args.push_back(std::make_pair(sizeof(cl_float), &_gain));
    openCLExecuteKernel(ctx, &retina_kernel, "verticalAnticausalFilter_multGain", globalSize, localSize, args, -1, -1);
}

void BasicRetinaFilter::_horizontalAnticausalFilter_Irregular(oclMat &outputFrame, const oclMat &spatialConstantBuffer)
{
    int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {outputFrame.rows, 1, 1};
    size_t localSize[]  = {256, 1, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &spatialConstantBuffer.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_int),   &spatialConstantBuffer.offset));
    openCLExecuteKernel(ctx, &retina_kernel, "horizontalAnticausalFilter_Irregular", globalSize, localSize, args, -1, -1);
}

//  vertical anticausal filter
void BasicRetinaFilter::_verticalCausalFilter_Irregular(oclMat &outputFrame, const oclMat &spatialConstantBuffer)
{
    int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {outputFrame.cols, 1, 1};
    size_t localSize[]  = {256, 1, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &spatialConstantBuffer.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_int),   &spatialConstantBuffer.offset));
    openCLExecuteKernel(ctx, &retina_kernel, "verticalCausalFilter_Irregular", globalSize, localSize, args, -1, -1);
}

void normalizeGrayOutput_0_maxOutputValue(oclMat &inputOutputBuffer, const float maxOutputValue)
{
    double min_val, max_val;
    ocl::minMax(inputOutputBuffer, &min_val, &max_val);
    float factor = maxOutputValue / static_cast<float>(max_val - min_val);
    float offset = - static_cast<float>(min_val) * factor;
    ocl::multiply(factor, inputOutputBuffer, inputOutputBuffer);
    ocl::add(inputOutputBuffer, offset, inputOutputBuffer);
}

void normalizeGrayOutputCentredSigmoide(const float meanValue, const float sensitivity, oclMat &in, oclMat &out, const float maxValue)
{
    if (sensitivity == 1.0f)
    {
        std::cerr << "TemplateBuffer::TemplateBuffer<type>::normalizeGrayOutputCentredSigmoide error: 2nd parameter (sensitivity) must not equal 0, copying original data..." << std::endl;
        in.copyTo(out);
        return;
    }

    float X0 = maxValue / (sensitivity - 1.0f);

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {in.cols, out.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    int elements_per_row = static_cast<int>(out.step / out.elemSize());

    args.push_back(std::make_pair(sizeof(cl_mem),   &in.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &out.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &in.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &in.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &meanValue));
    args.push_back(std::make_pair(sizeof(cl_float), &X0));
    openCLExecuteKernel(ctx, &retina_kernel, "normalizeGrayOutputCentredSigmoide", globalSize, localSize, args, -1, -1);
}

void normalizeGrayOutputNearZeroCentreredSigmoide(oclMat &inputPicture, oclMat &outputBuffer, const float sensitivity, const float maxOutputValue)
{
    float X0cube = sensitivity * sensitivity * sensitivity;

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {inputPicture.cols, inputPicture.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    int elements_per_row = static_cast<int>(inputPicture.step / inputPicture.elemSize());
    args.push_back(std::make_pair(sizeof(cl_mem),   &inputPicture.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &outputBuffer.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &inputPicture.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &inputPicture.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &maxOutputValue));
    args.push_back(std::make_pair(sizeof(cl_float), &X0cube));
    openCLExecuteKernel(ctx, &retina_kernel, "normalizeGrayOutputNearZeroCentreredSigmoide", globalSize, localSize, args, -1, -1);
}

void centerReductImageLuminance(oclMat &inputoutput)
{
    Scalar mean, stddev;
    cv::meanStdDev((Mat)inputoutput, mean, stddev);

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {inputoutput.cols, inputoutput.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    float f_mean = static_cast<float>(mean[0]);
    float f_stddev = static_cast<float>(stddev[0]);
    int elements_per_row = static_cast<int>(inputoutput.step / inputoutput.elemSize());
    args.push_back(std::make_pair(sizeof(cl_mem),   &inputoutput.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &inputoutput.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &inputoutput.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &f_mean));
    args.push_back(std::make_pair(sizeof(cl_float), &f_stddev));
    openCLExecuteKernel(ctx, &retina_kernel, "centerReductImageLuminance", globalSize, localSize, args, -1, -1);
}

///////////////////////////////////////
///////// ParvoRetinaFilter ///////////
///////////////////////////////////////
ParvoRetinaFilter::ParvoRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns)
    : BasicRetinaFilter(NBrows, NBcolumns, 3),
      _photoreceptorsOutput(NBrows, NBcolumns, CV_32FC1),
      _horizontalCellsOutput(NBrows, NBcolumns, CV_32FC1),
      _parvocellularOutputON(NBrows, NBcolumns, CV_32FC1),
      _parvocellularOutputOFF(NBrows, NBcolumns, CV_32FC1),
      _bipolarCellsOutputON(NBrows, NBcolumns, CV_32FC1),
      _bipolarCellsOutputOFF(NBrows, NBcolumns, CV_32FC1),
      _localAdaptationOFF(NBrows, NBcolumns, CV_32FC1)
{
    // link to the required local parent adaptation buffers
    _localAdaptationON = _localBuffer;
    _parvocellularOutputONminusOFF = _filterOutput;

    // init: set all the values to 0
    clearAllBuffers();
}

ParvoRetinaFilter::~ParvoRetinaFilter()
{
}

void ParvoRetinaFilter::clearAllBuffers()
{
    BasicRetinaFilter::clearAllBuffers();
    _photoreceptorsOutput = 0;
    _horizontalCellsOutput = 0;
    _parvocellularOutputON = 0;
    _parvocellularOutputOFF = 0;
    _bipolarCellsOutputON = 0;
    _bipolarCellsOutputOFF = 0;
    _localAdaptationOFF = 0;
}
void ParvoRetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
    BasicRetinaFilter::resize(NBrows, NBcolumns);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _photoreceptorsOutput);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _horizontalCellsOutput);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _parvocellularOutputON);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _parvocellularOutputOFF);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _bipolarCellsOutputON);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _bipolarCellsOutputOFF);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _localAdaptationOFF);

    // link to the required local parent adaptation buffers
    _localAdaptationON = _localBuffer;
    _parvocellularOutputONminusOFF = _filterOutput;

    // clean buffers
    clearAllBuffers();
}

void ParvoRetinaFilter::setOPLandParvoFiltersParameters(const float beta1, const float tau1, const float k1, const float beta2, const float tau2, const float k2)
{
    // init photoreceptors low pass filter
    setLPfilterParameters(beta1, tau1, k1);
    // init horizontal cells low pass filter
    setLPfilterParameters(beta2, tau2, k2, 1);
    // init parasol ganglion cells low pass filter (default parameters)
    setLPfilterParameters(0, tau1, k1, 2);

}
const oclMat &ParvoRetinaFilter::runFilter(const oclMat &inputFrame, const bool useParvoOutput)
{
    _spatiotemporalLPfilter(inputFrame, _photoreceptorsOutput);
    _spatiotemporalLPfilter(_photoreceptorsOutput, _horizontalCellsOutput, 1);
    _OPL_OnOffWaysComputing();

    if (useParvoOutput)
    {
        // local adaptation processes on ON and OFF ways
        _spatiotemporalLPfilter(_bipolarCellsOutputON, _localAdaptationON, 2);
        _localLuminanceAdaptation(_parvocellularOutputON, _localAdaptationON);
        _spatiotemporalLPfilter(_bipolarCellsOutputOFF, _localAdaptationOFF, 2);
        _localLuminanceAdaptation(_parvocellularOutputOFF, _localAdaptationOFF);
        ocl::subtract(_parvocellularOutputON, _parvocellularOutputOFF, _parvocellularOutputONminusOFF);
    }

    return _parvocellularOutputONminusOFF;
}
void ParvoRetinaFilter::_OPL_OnOffWaysComputing()
{
    int elements_per_row = static_cast<int>(_photoreceptorsOutput.step / _photoreceptorsOutput.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {(_photoreceptorsOutput.cols + 3) / 4, _photoreceptorsOutput.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &_photoreceptorsOutput.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_horizontalCellsOutput.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_bipolarCellsOutputON.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_bipolarCellsOutputOFF.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_parvocellularOutputON.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_parvocellularOutputOFF.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_photoreceptorsOutput.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_photoreceptorsOutput.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    openCLExecuteKernel(ctx, &retina_kernel, "OPL_OnOffWaysComputing", globalSize, localSize, args, -1, -1);
}

///////////////////////////////////////
//////////// MagnoFilter //////////////
///////////////////////////////////////
MagnoRetinaFilter::MagnoRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns)
    : BasicRetinaFilter(NBrows, NBcolumns, 2),
      _previousInput_ON(NBrows, NBcolumns, CV_32FC1),
      _previousInput_OFF(NBrows, NBcolumns, CV_32FC1),
      _amacrinCellsTempOutput_ON(NBrows, NBcolumns, CV_32FC1),
      _amacrinCellsTempOutput_OFF(NBrows, NBcolumns, CV_32FC1),
      _magnoXOutputON(NBrows, NBcolumns, CV_32FC1),
      _magnoXOutputOFF(NBrows, NBcolumns, CV_32FC1),
      _localProcessBufferON(NBrows, NBcolumns, CV_32FC1),
      _localProcessBufferOFF(NBrows, NBcolumns, CV_32FC1)
{
    _magnoYOutput = _filterOutput;
    _magnoYsaturated = _localBuffer;

    clearAllBuffers();
}

MagnoRetinaFilter::~MagnoRetinaFilter()
{
}
void MagnoRetinaFilter::clearAllBuffers()
{
    BasicRetinaFilter::clearAllBuffers();
    _previousInput_ON = 0;
    _previousInput_OFF = 0;
    _amacrinCellsTempOutput_ON = 0;
    _amacrinCellsTempOutput_OFF = 0;
    _magnoXOutputON = 0;
    _magnoXOutputOFF = 0;
    _localProcessBufferON = 0;
    _localProcessBufferOFF = 0;

}
void MagnoRetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
    BasicRetinaFilter::resize(NBrows, NBcolumns);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _previousInput_ON);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _previousInput_OFF);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _amacrinCellsTempOutput_ON);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _amacrinCellsTempOutput_OFF);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _magnoXOutputON);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _magnoXOutputOFF);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _localProcessBufferON);
    ensureSizeIsEnough(NBrows, NBcolumns, CV_32FC1, _localProcessBufferOFF);

    // to be sure, relink buffers
    _magnoYOutput = _filterOutput;
    _magnoYsaturated = _localBuffer;

    // reset all buffers
    clearAllBuffers();
}

void MagnoRetinaFilter::setCoefficientsTable(const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float localAdaptIntegration_tau, const float localAdaptIntegration_k )
{
    _temporalCoefficient = (float)std::exp(-1.0f / amacrinCellsTemporalCutFrequency);
    // the first set of parameters is dedicated to the low pass filtering property of the ganglion cells
    BasicRetinaFilter::setLPfilterParameters(parasolCells_beta, parasolCells_tau, parasolCells_k, 0);
    // the second set of parameters is dedicated to the ganglion cells output intergartion for their local adaptation property
    BasicRetinaFilter::setLPfilterParameters(0, localAdaptIntegration_tau, localAdaptIntegration_k, 1);
}

void MagnoRetinaFilter::_amacrineCellsComputing(
    const oclMat &OPL_ON,
    const oclMat &OPL_OFF
)
{
    int elements_per_row = static_cast<int>(OPL_ON.step / OPL_ON.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {OPL_ON.cols, OPL_ON.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &OPL_ON.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &OPL_OFF.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_previousInput_ON.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_previousInput_OFF.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_amacrinCellsTempOutput_ON.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &_amacrinCellsTempOutput_OFF.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &OPL_ON.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &OPL_ON.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &_temporalCoefficient));
    openCLExecuteKernel(ctx, &retina_kernel, "amacrineCellsComputing", globalSize, localSize, args, -1, -1);
}

const oclMat &MagnoRetinaFilter::runFilter(const oclMat &OPL_ON, const oclMat &OPL_OFF)
{
    // Compute the high pass temporal filter
    _amacrineCellsComputing(OPL_ON, OPL_OFF);

    // apply low pass filtering on ON and OFF ways after temporal high pass filtering
    _spatiotemporalLPfilter(_amacrinCellsTempOutput_ON, _magnoXOutputON, 0);
    _spatiotemporalLPfilter(_amacrinCellsTempOutput_OFF, _magnoXOutputOFF, 0);

    // local adaptation of the ganglion cells to the local contrast of the moving contours
    _spatiotemporalLPfilter(_magnoXOutputON, _localProcessBufferON, 1);
    _localLuminanceAdaptation(_magnoXOutputON, _localProcessBufferON);

    _spatiotemporalLPfilter(_magnoXOutputOFF, _localProcessBufferOFF, 1);
    _localLuminanceAdaptation(_magnoXOutputOFF, _localProcessBufferOFF);

    _magnoYOutput = _magnoXOutputON + _magnoXOutputOFF;

    return _magnoYOutput;
}

///////////////////////////////////////
//////////// RetinaColor //////////////
///////////////////////////////////////

// define an array of ROI headers of input x
#define MAKE_OCLMAT_SLICES(x, n) \
    oclMat x##_slices[n];\
    for(int _SLICE_INDEX_ = 0; _SLICE_INDEX_ < n; _SLICE_INDEX_ ++)\
    {\
        x##_slices[_SLICE_INDEX_] = x(getROI(_SLICE_INDEX_));\
    }

RetinaColor::RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod)
    : BasicRetinaFilter(NBrows, NBcolumns, 3),
      _RGBmosaic(NBrows * 3, NBcolumns, CV_32FC1),
      _tempMultiplexedFrame(NBrows, NBcolumns, CV_32FC1),
      _demultiplexedTempBuffer(NBrows * 3, NBcolumns, CV_32FC1),
      _demultiplexedColorFrame(NBrows * 3, NBcolumns, CV_32FC1),
      _chrominance(NBrows * 3, NBcolumns, CV_32FC1),
      _colorLocalDensity(NBrows * 3, NBcolumns, CV_32FC1),
      _imageGradient(NBrows * 3, NBcolumns, CV_32FC1)
{
    // link to parent buffers (let's recycle !)
    _luminance = _filterOutput;
    _multiplexedFrame = _localBuffer;

    _objectInit = false;
    _samplingMethod = samplingMethod;
    _saturateColors = false;
    _colorSaturationValue = 4.0;

    // set default spatio-temporal filter parameters
    setLPfilterParameters(0.0, 0.0, 1.5);
    setLPfilterParameters(0.0, 0.0, 10.5, 1);// for the low pass filter dedicated to contours energy extraction (demultiplexing process)
    setLPfilterParameters(0.f, 0.f, 0.9f, 2);

    // init default value on image Gradient
    _imageGradient = 0.57f;

    // init color sampling map
    _initColorSampling();

    // flush all buffers
    clearAllBuffers();
}

RetinaColor::~RetinaColor()
{

}

void RetinaColor::clearAllBuffers()
{
    BasicRetinaFilter::clearAllBuffers();
    _tempMultiplexedFrame = 0.f;
    _demultiplexedTempBuffer = 0.f;

    _demultiplexedColorFrame = 0.f;
    _chrominance = 0.f;
    _imageGradient = 0.57f;
}

void RetinaColor::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
    BasicRetinaFilter::clearAllBuffers();
    ensureSizeIsEnough(NBrows,     NBcolumns, CV_32FC1, _tempMultiplexedFrame);
    ensureSizeIsEnough(NBrows * 2, NBcolumns, CV_32FC1, _imageGradient);
    ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _RGBmosaic);
    ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _demultiplexedTempBuffer);
    ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _demultiplexedColorFrame);
    ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _chrominance);
    ensureSizeIsEnough(NBrows * 3, NBcolumns, CV_32FC1, _colorLocalDensity);

    // link to parent buffers (let's recycle !)
    _luminance = _filterOutput;
    _multiplexedFrame = _localBuffer;

    // init color sampling map
    _initColorSampling();

    // clean buffers
    clearAllBuffers();
}

static void inverseValue(oclMat &input)
{
    int elements_per_row = static_cast<int>(input.step / input.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {input.cols, input.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &input.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &input.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &input.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    openCLExecuteKernel(ctx, &retina_kernel, "inverseValue", globalSize, localSize, args, -1, -1);
}

void RetinaColor::_initColorSampling()
{
    CV_Assert(_samplingMethod == RETINA_COLOR_BAYER);
    _pR = _pB = 0.25;
    _pG = 0.5;
    // filling the mosaic buffer:
    _RGBmosaic = 0;
    Mat tmp_mat(_NBrows * 3, _NBcols, CV_32FC1);
    float * tmp_mat_ptr = tmp_mat.ptr<float>();
    tmp_mat.setTo(0);
    for (unsigned int index = 0 ; index < getNBpixels(); ++index)
    {
        tmp_mat_ptr[bayerSampleOffset(index)] = 1.0;
    }
    _RGBmosaic.upload(tmp_mat);
    // computing photoreceptors local density
    MAKE_OCLMAT_SLICES(_RGBmosaic, 3);
    MAKE_OCLMAT_SLICES(_colorLocalDensity, 3);
    _colorLocalDensity.setTo(0);
    _spatiotemporalLPfilter(_RGBmosaic_slices[0], _colorLocalDensity_slices[0]);
    _spatiotemporalLPfilter(_RGBmosaic_slices[1], _colorLocalDensity_slices[1]);
    _spatiotemporalLPfilter(_RGBmosaic_slices[2], _colorLocalDensity_slices[2]);

    //_colorLocalDensity = oclMat(_colorLocalDensity.size(), _colorLocalDensity.type(), 1.f) / _colorLocalDensity;
    inverseValue(_colorLocalDensity);

    _objectInit = true;
}

static void demultiplex(const oclMat &input, oclMat &ouput)
{
    int elements_per_row = static_cast<int>(input.step / input.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {input.cols, input.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &input.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &ouput.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &input.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &input.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    openCLExecuteKernel(ctx, &retina_kernel, "runColorDemultiplexingBayer", globalSize, localSize, args, -1, -1);
}

static void normalizePhotoDensity(
    const oclMat &chroma,
    const oclMat &colorDensity,
    const oclMat &multiplex,
    oclMat &ocl_luma,
    oclMat &demultiplex,
    const float pG
)
{
    int elements_per_row = static_cast<int>(ocl_luma.step / ocl_luma.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {ocl_luma.cols, ocl_luma.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &chroma.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &colorDensity.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &multiplex.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &ocl_luma.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &demultiplex.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &ocl_luma.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &ocl_luma.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &pG));
    openCLExecuteKernel(ctx, &retina_kernel, "normalizePhotoDensity", globalSize, localSize, args, -1, -1);
}

static void substractResidual(
    oclMat &colorDemultiplex,
    float pR,
    float pG,
    float pB
)
{
    int elements_per_row = static_cast<int>(colorDemultiplex.step / colorDemultiplex.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    int rows = colorDemultiplex.rows / 3, cols = colorDemultiplex.cols;
    size_t globalSize[] = {cols, rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &colorDemultiplex.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &pR));
    args.push_back(std::make_pair(sizeof(cl_float), &pG));
    args.push_back(std::make_pair(sizeof(cl_float), &pB));
    openCLExecuteKernel(ctx, &retina_kernel, "substractResidual", globalSize, localSize, args, -1, -1);
}

static void demultiplexAssign(const oclMat& input, const oclMat& output)
{
    // only supports bayer
    int elements_per_row = static_cast<int>(input.step / input.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    int rows = input.rows / 3, cols = input.cols;
    size_t globalSize[] = {cols, rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &input.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &output.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    openCLExecuteKernel(ctx, &retina_kernel, "demultiplexAssign", globalSize, localSize, args, -1, -1);
}

void RetinaColor::runColorDemultiplexing(
    const oclMat &ocl_multiplexed_input,
    const bool adaptiveFiltering,
    const float maxInputValue
)
{
    MAKE_OCLMAT_SLICES(_demultiplexedTempBuffer, 3);
    MAKE_OCLMAT_SLICES(_chrominance, 3);
    MAKE_OCLMAT_SLICES(_RGBmosaic, 3);
    MAKE_OCLMAT_SLICES(_demultiplexedColorFrame, 3);
    MAKE_OCLMAT_SLICES(_colorLocalDensity, 3);

    _demultiplexedTempBuffer.setTo(0);
    demultiplex(ocl_multiplexed_input, _demultiplexedTempBuffer);

    // interpolate the demultiplexed frame depending on the color sampling method
    if (!adaptiveFiltering)
    {
        CV_Assert(adaptiveFiltering == false);
    }

    _spatiotemporalLPfilter(_demultiplexedTempBuffer_slices[0], _chrominance_slices[0]);
    _spatiotemporalLPfilter(_demultiplexedTempBuffer_slices[1], _chrominance_slices[1]);
    _spatiotemporalLPfilter(_demultiplexedTempBuffer_slices[2], _chrominance_slices[2]);

    if (!adaptiveFiltering)// compute the gradient on the luminance
    {
        // TODO: implement me!
        CV_Assert(adaptiveFiltering == false);
    }
    else
    {
        normalizePhotoDensity(_chrominance, _colorLocalDensity, ocl_multiplexed_input, _luminance, _demultiplexedTempBuffer, _pG);
        // compute the gradient of the luminance
        _computeGradient(_luminance, _imageGradient);

        _adaptiveSpatialLPfilter(_RGBmosaic_slices[0], _imageGradient, _chrominance_slices[0]);
        _adaptiveSpatialLPfilter(_RGBmosaic_slices[1], _imageGradient, _chrominance_slices[1]);
        _adaptiveSpatialLPfilter(_RGBmosaic_slices[2], _imageGradient, _chrominance_slices[2]);

        _adaptiveSpatialLPfilter(_demultiplexedTempBuffer_slices[0], _imageGradient, _demultiplexedColorFrame_slices[0]);
        _adaptiveSpatialLPfilter(_demultiplexedTempBuffer_slices[1], _imageGradient, _demultiplexedColorFrame_slices[1]);
        _adaptiveSpatialLPfilter(_demultiplexedTempBuffer_slices[2], _imageGradient, _demultiplexedColorFrame_slices[2]);

        _demultiplexedColorFrame /= _chrominance; // per element division
        substractResidual(_demultiplexedColorFrame, _pR, _pG, _pB);
        runColorMultiplexing(_demultiplexedColorFrame, _tempMultiplexedFrame);

        _demultiplexedTempBuffer.setTo(0);
        _luminance = ocl_multiplexed_input - _tempMultiplexedFrame;
        demultiplexAssign(_demultiplexedColorFrame, _demultiplexedTempBuffer);

        for(int i = 0; i < 3; i ++)
        {
            _spatiotemporalLPfilter(_demultiplexedTempBuffer_slices[i], _demultiplexedTempBuffer_slices[i]);
            _demultiplexedColorFrame_slices[i] = _demultiplexedTempBuffer_slices[i] * _colorLocalDensity_slices[i] + _luminance;
        }
    }
    // eliminate saturated colors by simple clipping values to the input range
    clipRGBOutput_0_maxInputValue(_demultiplexedColorFrame, maxInputValue);

    if (_saturateColors)
    {
        ocl::normalizeGrayOutputCentredSigmoide(128, maxInputValue, _demultiplexedColorFrame, _demultiplexedColorFrame);
    }
}
void RetinaColor::runColorMultiplexing(const oclMat &demultiplexedInputFrame, oclMat &multiplexedFrame)
{
    int elements_per_row = static_cast<int>(multiplexedFrame.step / multiplexedFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {multiplexedFrame.cols, multiplexedFrame.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &demultiplexedInputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &multiplexedFrame.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &multiplexedFrame.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &multiplexedFrame.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    openCLExecuteKernel(ctx, &retina_kernel, "runColorMultiplexingBayer", globalSize, localSize, args, -1, -1);
}

void RetinaColor::clipRGBOutput_0_maxInputValue(oclMat &inputOutputBuffer, const float maxInputValue)
{
    // the kernel is equivalent to:
    //ocl::threshold(inputOutputBuffer, inputOutputBuffer, maxInputValue, maxInputValue, THRESH_TRUNC);
    //ocl::threshold(inputOutputBuffer, inputOutputBuffer, 0, 0, THRESH_TOZERO);
    int elements_per_row = static_cast<int>(inputOutputBuffer.step / inputOutputBuffer.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBcols, inputOutputBuffer.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &inputOutputBuffer.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &inputOutputBuffer.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &maxInputValue));
    openCLExecuteKernel(ctx, &retina_kernel, "clipRGBOutput_0_maxInputValue", globalSize, localSize, args, -1, -1);
}

void RetinaColor::_adaptiveSpatialLPfilter(const oclMat &inputFrame, const oclMat &gradient, oclMat &outputFrame)
{
    /**********/
    _gain = (1 - 0.57f) * (1 - 0.57f) * (1 - 0.06f) * (1 - 0.06f);

    // launch the serie of 1D directional filters in order to compute the 2D low pass filter
    // -> horizontal filters work with the first layer of imageGradient
    _adaptiveHorizontalCausalFilter_addInput(inputFrame, gradient, outputFrame);
    _horizontalAnticausalFilter_Irregular(outputFrame, gradient);
    // -> horizontal filters work with the second layer of imageGradient
    _verticalCausalFilter_Irregular(outputFrame, gradient(getROI(1)));
    _adaptiveVerticalAnticausalFilter_multGain(gradient, outputFrame);
}

void RetinaColor::_adaptiveHorizontalCausalFilter_addInput(const oclMat &inputFrame, const oclMat &gradient, oclMat &outputFrame)
{
    int elements_per_row = static_cast<int>(inputFrame.step / inputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBrows, 1, 1};
    size_t localSize[]  = {256, 1, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &inputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &gradient.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBrows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_int),   &inputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_int),   &gradient.offset));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.offset));
    openCLExecuteKernel(ctx, &retina_kernel, "adaptiveHorizontalCausalFilter_addInput", globalSize, localSize, args, -1, -1);
}

void RetinaColor::_adaptiveVerticalAnticausalFilter_multGain(const oclMat &gradient, oclMat &outputFrame)
{
    int elements_per_row = static_cast<int>(outputFrame.step / outputFrame.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBcols, 1, 1};
    size_t localSize[]  = {256, 1, 1};

    int gradOffset = gradient.offset + static_cast<int>(gradient.step * _NBrows);

    args.push_back(std::make_pair(sizeof(cl_mem),   &gradient.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &outputFrame.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBrows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_int),   &gradOffset));
    args.push_back(std::make_pair(sizeof(cl_int),   &outputFrame.offset));
    args.push_back(std::make_pair(sizeof(cl_float), &_gain));
    openCLExecuteKernel(ctx, &retina_kernel, "adaptiveVerticalAnticausalFilter_multGain", globalSize, localSize, args, -1, -1);
}
void RetinaColor::_computeGradient(const oclMat &luminance, oclMat &gradient)
{
    int elements_per_row = static_cast<int>(luminance.step / luminance.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {_NBcols, _NBrows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &luminance.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &gradient.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBcols));
    args.push_back(std::make_pair(sizeof(cl_int),   &_NBrows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    openCLExecuteKernel(ctx, &retina_kernel, "computeGradient", globalSize, localSize, args, -1, -1);
}

///////////////////////////////////////
//////////// RetinaFilter /////////////
///////////////////////////////////////
RetinaFilter::RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode, const int samplingMethod, const bool useRetinaLogSampling, const double, const double)
    :
    _photoreceptorsPrefilter(sizeRows, sizeColumns, 4),
    _ParvoRetinaFilter(sizeRows, sizeColumns),
    _MagnoRetinaFilter(sizeRows, sizeColumns),
    _colorEngine(sizeRows, sizeColumns, samplingMethod)
{
    CV_Assert(!useRetinaLogSampling);

    // set default processing activities
    _useParvoOutput = true;
    _useMagnoOutput = true;

    _useColorMode = colorMode;

    // set default parameters
    setGlobalParameters();

    // stability controls values init
    _setInitPeriodCount();
    _globalTemporalConstant = 25;

    // reset all buffers
    clearAllBuffers();
}

RetinaFilter::~RetinaFilter()
{
}

void RetinaFilter::clearAllBuffers()
{
    _photoreceptorsPrefilter.clearAllBuffers();
    _ParvoRetinaFilter.clearAllBuffers();
    _MagnoRetinaFilter.clearAllBuffers();
    _colorEngine.clearAllBuffers();
    // stability controls value init
    _setInitPeriodCount();
}

void RetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
    unsigned int rows = NBrows, cols = NBcolumns;

    // resize optionnal member and adjust other modules size if required
    _photoreceptorsPrefilter.resize(rows, cols);
    _ParvoRetinaFilter.resize(rows, cols);
    _MagnoRetinaFilter.resize(rows, cols);
    _colorEngine.resize(rows, cols);

    // clean buffers
    clearAllBuffers();

}

void RetinaFilter::_setInitPeriodCount()
{
    // find out the maximum temporal constant value and apply a security factor
    // false value (obviously too long) but appropriate for simple use
    _globalTemporalConstant = (unsigned int)(_ParvoRetinaFilter.getPhotoreceptorsTemporalConstant() + _ParvoRetinaFilter.getHcellsTemporalConstant() + _MagnoRetinaFilter.getTemporalConstant());
    // reset frame counter
    _ellapsedFramesSinceLastReset = 0;
}

void RetinaFilter::setGlobalParameters(const float OPLspatialResponse1, const float OPLtemporalresponse1, const float OPLassymetryGain, const float OPLspatialResponse2, const float OPLtemporalresponse2, const float LPfilterSpatialResponse, const float LPfilterGain, const float LPfilterTemporalresponse, const float MovingContoursExtractorCoefficient, const bool normalizeParvoOutput_0_maxOutputValue, const bool normalizeMagnoOutput_0_maxOutputValue, const float maxOutputValue, const float maxInputValue, const float meanValue)
{
    _normalizeParvoOutput_0_maxOutputValue = normalizeParvoOutput_0_maxOutputValue;
    _normalizeMagnoOutput_0_maxOutputValue = normalizeMagnoOutput_0_maxOutputValue;
    _maxOutputValue = maxOutputValue;
    _photoreceptorsPrefilter.setV0CompressionParameter(0.9f, maxInputValue, meanValue);
    _photoreceptorsPrefilter.setLPfilterParameters(0, 0, 10, 3); // keeps low pass filter with low cut frequency in memory (usefull for the tone mapping function)
    _ParvoRetinaFilter.setOPLandParvoFiltersParameters(0, OPLtemporalresponse1, OPLspatialResponse1, OPLassymetryGain, OPLtemporalresponse2, OPLspatialResponse2);
    _ParvoRetinaFilter.setV0CompressionParameter(0.9f, maxInputValue, meanValue);
    _MagnoRetinaFilter.setCoefficientsTable(LPfilterGain, LPfilterTemporalresponse, LPfilterSpatialResponse, MovingContoursExtractorCoefficient, 0, 2.0f * LPfilterSpatialResponse);
    _MagnoRetinaFilter.setV0CompressionParameter(0.7f, maxInputValue, meanValue);

    // stability controls value init
    _setInitPeriodCount();
}

bool RetinaFilter::checkInput(const oclMat &input, const bool)
{
    BasicRetinaFilter *inputTarget = &_photoreceptorsPrefilter;

    bool test = (input.rows == static_cast<int>(inputTarget->getNBrows())
                 || input.rows == static_cast<int>(inputTarget->getNBrows()) * 3
                 || input.rows == static_cast<int>(inputTarget->getNBrows()) * 4)
                && input.cols == static_cast<int>(inputTarget->getNBcolumns());
    if (!test)
    {
        std::cerr << "RetinaFilter::checkInput: input buffer does not match retina buffer size, conversion aborted" << std::endl;
        return false;
    }

    return true;
}

// main function that runs the filter for a given input frame
bool RetinaFilter::runFilter(const oclMat &imageInput, const bool useAdaptiveFiltering, const bool processRetinaParvoMagnoMapping, const bool useColorMode, const bool inputIsColorMultiplexed)
{
    // preliminary check
    bool processSuccess = true;
    if (!checkInput(imageInput, useColorMode))
    {
        return false;
    }

    // run the color multiplexing if needed and compute each suub filter of the retina:
    // -> local adaptation
    // -> contours OPL extraction
    // -> moving contours extraction

    // stability controls value update
    ++_ellapsedFramesSinceLastReset;

    _useColorMode = useColorMode;

    oclMat selectedPhotoreceptorsLocalAdaptationInput = imageInput;
    oclMat selectedPhotoreceptorsColorInput = imageInput;

    //********** Following is input data specific photoreceptors processing
    if (useColorMode && (!inputIsColorMultiplexed)) // not multiplexed color input case
    {
        _colorEngine.runColorMultiplexing(selectedPhotoreceptorsColorInput);
        selectedPhotoreceptorsLocalAdaptationInput = _colorEngine.getMultiplexedFrame();
    }
    //********** Following is generic Retina processing

    // photoreceptors local adaptation
    _photoreceptorsPrefilter.runFilter_LocalAdapdation(selectedPhotoreceptorsLocalAdaptationInput, _ParvoRetinaFilter.getHorizontalCellsOutput());

    // run parvo filter
    _ParvoRetinaFilter.runFilter(_photoreceptorsPrefilter.getOutput(), _useParvoOutput);

    if (_useParvoOutput)
    {
        _ParvoRetinaFilter.normalizeGrayOutputCentredSigmoide(); // models the saturation of the cells, usefull for visualisation of the ON-OFF Parvo Output, Bipolar cells outputs do not change !!!
        _ParvoRetinaFilter.centerReductImageLuminance(); // best for further spectrum analysis

        if (_normalizeParvoOutput_0_maxOutputValue)
        {
            _ParvoRetinaFilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue);
        }
    }

    if (_useParvoOutput && _useMagnoOutput)
    {
        _MagnoRetinaFilter.runFilter(_ParvoRetinaFilter.getBipolarCellsON(), _ParvoRetinaFilter.getBipolarCellsOFF());
        if (_normalizeMagnoOutput_0_maxOutputValue)
        {
            _MagnoRetinaFilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue);
        }
        _MagnoRetinaFilter.normalizeGrayOutputNearZeroCentreredSigmoide();
    }

    if (_useParvoOutput && _useMagnoOutput && processRetinaParvoMagnoMapping)
    {
        _processRetinaParvoMagnoMapping();
        if (_useColorMode)
        {
            _colorEngine.runColorDemultiplexing(_retinaParvoMagnoMappedFrame, useAdaptiveFiltering, _maxOutputValue);
        }
        return processSuccess;
    }

    if (_useParvoOutput && _useColorMode)
    {
        _colorEngine.runColorDemultiplexing(_ParvoRetinaFilter.getOutput(), useAdaptiveFiltering, _maxOutputValue);
    }
    return processSuccess;
}

const oclMat &RetinaFilter::getContours()
{
    if (_useColorMode)
    {
        return _colorEngine.getLuminance();
    }
    else
    {
        return _ParvoRetinaFilter.getOutput();
    }
}
void RetinaFilter::_processRetinaParvoMagnoMapping()
{
    oclMat parvo = _ParvoRetinaFilter.getOutput();
    oclMat magno = _MagnoRetinaFilter.getOutput();

    int halfRows = parvo.rows / 2;
    int halfCols = parvo.cols / 2;
    float minDistance = MIN(halfRows, halfCols) * 0.7f;

    int elements_per_row = static_cast<int>(parvo.step / parvo.elemSize());

    Context * ctx = Context::getContext();
    std::vector<std::pair<size_t, const void *> > args;
    size_t globalSize[] = {parvo.cols, parvo.rows, 1};
    size_t localSize[]  = {16, 16, 1};

    args.push_back(std::make_pair(sizeof(cl_mem),   &parvo.data));
    args.push_back(std::make_pair(sizeof(cl_mem),   &magno.data));
    args.push_back(std::make_pair(sizeof(cl_int),   &parvo.cols));
    args.push_back(std::make_pair(sizeof(cl_int),   &parvo.rows));
    args.push_back(std::make_pair(sizeof(cl_int),   &halfCols));
    args.push_back(std::make_pair(sizeof(cl_int),   &halfRows));
    args.push_back(std::make_pair(sizeof(cl_int),   &elements_per_row));
    args.push_back(std::make_pair(sizeof(cl_float), &minDistance));
    openCLExecuteKernel(ctx, &retina_kernel, "processRetinaParvoMagnoMapping", globalSize, localSize, args, -1, -1);
}
}  /* namespace ocl */

Ptr<Retina> createRetina_OCL(Size getInputSize){ return makePtr<ocl::RetinaOCLImpl>(getInputSize); }
Ptr<Retina> createRetina_OCL(Size getInputSize, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
    return makePtr<ocl::RetinaOCLImpl>(getInputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
}

}  /* namespace bioinspired */
}  /* namespace cv */

#endif /* #ifdef HAVE_OPENCV_OCL */