aruco.cpp 60.8 KB
Newer Older
S. Garrido's avatar
S. Garrido committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.

                          License Agreement
               For Open Source Computer Vision Library
                       (3-clause BSD License)

Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

  * Neither the names of the copyright holders nor the names of the contributors
    may be used to endorse or promote products derived from this software
    without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/

#include "precomp.hpp"
#include "opencv2/aruco.hpp"
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>


namespace cv {
namespace aruco {

using namespace std;




/**
  *
  */
DetectorParameters::DetectorParameters()
    : adaptiveThreshWinSizeMin(3),
      adaptiveThreshWinSizeMax(23),
      adaptiveThreshWinSizeStep(10),
      adaptiveThreshConstant(7),
      minMarkerPerimeterRate(0.03),
      maxMarkerPerimeterRate(4.),
      polygonalApproxAccuracyRate(0.03),
      minCornerDistanceRate(0.05),
      minDistanceToBorder(3),
      minMarkerDistanceRate(0.05),
      doCornerRefinement(false),
      cornerRefinementWinSize(5),
      cornerRefinementMaxIterations(30),
      cornerRefinementMinAccuracy(0.1),
      markerBorderBits(1),
      perspectiveRemovePixelPerCell(4),
      perspectiveRemoveIgnoredMarginPerCell(0.13),
74
      maxErroneousBitsInBorderRate(0.35),
S. Garrido's avatar
S. Garrido committed
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
      minOtsuStdDev(5.0),
      errorCorrectionRate(0.6) {}


/**
  * @brief Convert input image to gray if it is a 3-channels image
  */
static void _convertToGrey(InputArray _in, OutputArray _out) {

    CV_Assert(_in.getMat().channels() == 1 || _in.getMat().channels() == 3);

    _out.create(_in.getMat().size(), CV_8UC1);
    if(_in.getMat().type() == CV_8UC3)
        cvtColor(_in.getMat(), _out.getMat(), COLOR_BGR2GRAY);
    else
        _in.getMat().copyTo(_out);
}


/**
  * @brief Threshold input image using adaptive thresholding
  */
static void _threshold(InputArray _in, OutputArray _out, int winSize, double constant) {

    CV_Assert(winSize >= 3);
    if(winSize % 2 == 0) winSize++; // win size must be odd
    adaptiveThreshold(_in, _out, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY_INV, winSize, constant);
}


/**
  * @brief Given a tresholded image, find the contours, calculate their polygonal approximation
  * and take those that accomplish some conditions
  */
static void _findMarkerContours(InputArray _in, vector< vector< Point2f > > &candidates,
                                vector< vector< Point > > &contoursOut, double minPerimeterRate,
                                double maxPerimeterRate, double accuracyRate,
                                double minCornerDistanceRate, int minDistanceToBorder) {

    CV_Assert(minPerimeterRate > 0 && maxPerimeterRate > 0 && accuracyRate > 0 &&
              minCornerDistanceRate >= 0 && minDistanceToBorder >= 0);

    // calculate maximum and minimum sizes in pixels
    unsigned int minPerimeterPixels =
        (unsigned int)(minPerimeterRate * max(_in.getMat().cols, _in.getMat().rows));
    unsigned int maxPerimeterPixels =
        (unsigned int)(maxPerimeterRate * max(_in.getMat().cols, _in.getMat().rows));

    Mat contoursImg;
    _in.getMat().copyTo(contoursImg);
    vector< vector< Point > > contours;
126
    findContours(contoursImg, contours, RETR_LIST, CHAIN_APPROX_NONE);
S. Garrido's avatar
S. Garrido committed
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    // now filter list of contours
    for(unsigned int i = 0; i < contours.size(); i++) {
        // check perimeter
        if(contours[i].size() < minPerimeterPixels || contours[i].size() > maxPerimeterPixels)
            continue;

        // check is square and is convex
        vector< Point > approxCurve;
        approxPolyDP(contours[i], approxCurve, double(contours[i].size()) * accuracyRate, true);
        if(approxCurve.size() != 4 || !isContourConvex(approxCurve)) continue;

        // check min distance between corners
        double minDistSq =
            max(contoursImg.cols, contoursImg.rows) * max(contoursImg.cols, contoursImg.rows);
        for(int j = 0; j < 4; j++) {
            double d = (double)(approxCurve[j].x - approxCurve[(j + 1) % 4].x) *
                           (double)(approxCurve[j].x - approxCurve[(j + 1) % 4].x) +
                       (double)(approxCurve[j].y - approxCurve[(j + 1) % 4].y) *
                           (double)(approxCurve[j].y - approxCurve[(j + 1) % 4].y);
            minDistSq = min(minDistSq, d);
        }
        double minCornerDistancePixels = double(contours[i].size()) * minCornerDistanceRate;
        if(minDistSq < minCornerDistancePixels * minCornerDistancePixels) continue;

        // check if it is too near to the image border
        bool tooNearBorder = false;
        for(int j = 0; j < 4; j++) {
            if(approxCurve[j].x < minDistanceToBorder || approxCurve[j].y < minDistanceToBorder ||
               approxCurve[j].x > contoursImg.cols - 1 - minDistanceToBorder ||
               approxCurve[j].y > contoursImg.rows - 1 - minDistanceToBorder)
                tooNearBorder = true;
        }
        if(tooNearBorder) continue;

        // if it passes all the test, add to candidates vector
        vector< Point2f > currentCandidate;
        currentCandidate.resize(4);
        for(int j = 0; j < 4; j++) {
            currentCandidate[j] = Point2f((float)approxCurve[j].x, (float)approxCurve[j].y);
        }
        candidates.push_back(currentCandidate);
        contoursOut.push_back(contours[i]);
    }
}


/**
  * @brief Assure order of candidate corners is clockwise direction
  */
static void _reorderCandidatesCorners(vector< vector< Point2f > > &candidates) {

    for(unsigned int i = 0; i < candidates.size(); i++) {
        double dx1 = candidates[i][1].x - candidates[i][0].x;
        double dy1 = candidates[i][1].y - candidates[i][0].y;
        double dx2 = candidates[i][2].x - candidates[i][0].x;
        double dy2 = candidates[i][2].y - candidates[i][0].y;
        double crossProduct = (dx1 * dy2) - (dy1 * dx2);

        if(crossProduct < 0.0) { // not clockwise direction
            swap(candidates[i][1], candidates[i][3]);
        }
    }
}


/**
  * @brief Check candidates that are too close to each other and remove the smaller one
  */
static void _filterTooCloseCandidates(const vector< vector< Point2f > > &candidatesIn,
                                      vector< vector< Point2f > > &candidatesOut,
                                      const vector< vector< Point > > &contoursIn,
                                      vector< vector< Point > > &contoursOut,
                                      double minMarkerDistanceRate) {

    CV_Assert(minMarkerDistanceRate >= 0);

    vector< pair< int, int > > nearCandidates;
    for(unsigned int i = 0; i < candidatesIn.size(); i++) {
        for(unsigned int j = i + 1; j < candidatesIn.size(); j++) {

            int minimumPerimeter = min((int)contoursIn[i].size(), (int)contoursIn[j].size() );

            // fc is the first corner considered on one of the markers, 4 combinatios are posible
            for(int fc = 0; fc < 4; fc++) {
                double distSq = 0;
                for(int c = 0; c < 4; c++) {
                    // modC is the corner considering first corner is fc
                    int modC = (c + fc) % 4;
                    distSq += (candidatesIn[i][modC].x - candidatesIn[j][c].x) *
                                  (candidatesIn[i][modC].x - candidatesIn[j][c].x) +
                              (candidatesIn[i][modC].y - candidatesIn[j][c].y) *
                                  (candidatesIn[i][modC].y - candidatesIn[j][c].y);
                }
                distSq /= 4.;

                // if mean square distance is too low, remove the smaller one of the two markers
                double minMarkerDistancePixels = double(minimumPerimeter) * minMarkerDistanceRate;
                if(distSq < minMarkerDistancePixels * minMarkerDistancePixels) {
                    nearCandidates.push_back(pair< int, int >(i, j));
                    break;
                }
            }
        }
    }

    // mark smaller one in pairs to remove
    vector< bool > toRemove(candidatesIn.size(), false);
    for(unsigned int i = 0; i < nearCandidates.size(); i++) {
        // if one of the marker has been already markerd to removed, dont need to do anything
        if(toRemove[nearCandidates[i].first] || toRemove[nearCandidates[i].second]) continue;
        size_t perimeter1 = contoursIn[nearCandidates[i].first].size();
        size_t perimeter2 = contoursIn[nearCandidates[i].second].size();
        if(perimeter1 > perimeter2)
            toRemove[nearCandidates[i].second] = true;
        else
            toRemove[nearCandidates[i].first] = true;
    }

    // remove extra candidates
    candidatesOut.clear();
    int totalRemaining = 0;
    for(unsigned int i = 0; i < toRemove.size(); i++)
        if(!toRemove[i]) totalRemaining++;
    candidatesOut.resize(totalRemaining);
    contoursOut.resize(totalRemaining);
    for(unsigned int i = 0, currIdx = 0; i < candidatesIn.size(); i++) {
        if(toRemove[i]) continue;
        candidatesOut[currIdx] = candidatesIn[i];
        contoursOut[currIdx] = contoursIn[i];
        currIdx++;
    }
}


/**
  * ParallelLoopBody class for the parallelization of the basic candidate detections using
  * different threhold window sizes. Called from function _detectInitialCandidates()
  */
class DetectInitialCandidatesParallel : public ParallelLoopBody {
    public:
    DetectInitialCandidatesParallel(const Mat *_grey,
                                    vector< vector< vector< Point2f > > > *_candidatesArrays,
                                    vector< vector< vector< Point > > > *_contoursArrays,
                                    DetectorParameters *_params)
        : grey(_grey), candidatesArrays(_candidatesArrays), contoursArrays(_contoursArrays),
          params(_params) {}

    void operator()(const Range &range) const {
        const int begin = range.start;
        const int end = range.end;

        for(int i = begin; i < end; i++) {
            int currScale =
                params->adaptiveThreshWinSizeMin + i * params->adaptiveThreshWinSizeStep;
            // threshold
            Mat thresh;
            _threshold(*grey, thresh, currScale, params->adaptiveThreshConstant);

            // detect rectangles
            _findMarkerContours(thresh, (*candidatesArrays)[i], (*contoursArrays)[i],
                                params->minMarkerPerimeterRate, params->maxMarkerPerimeterRate,
                                params->polygonalApproxAccuracyRate, params->minCornerDistanceRate,
                                params->minDistanceToBorder);
        }
    }

    private:
    DetectInitialCandidatesParallel &operator=(const DetectInitialCandidatesParallel &);

    const Mat *grey;
    vector< vector< vector< Point2f > > > *candidatesArrays;
    vector< vector< vector< Point > > > *contoursArrays;
    DetectorParameters *params;
};


/**
 * @brief Initial steps on finding square candidates
 */
static void _detectInitialCandidates(const Mat &grey, vector< vector< Point2f > > &candidates,
                                     vector< vector< Point > > &contours,
                                     DetectorParameters params) {

    CV_Assert(params.adaptiveThreshWinSizeMin >= 3 && params.adaptiveThreshWinSizeMax >= 3);
    CV_Assert(params.adaptiveThreshWinSizeMax >= params.adaptiveThreshWinSizeMin);
    CV_Assert(params.adaptiveThreshWinSizeStep > 0);

    // number of window sizes (scales) to apply adaptive thresholding
    int nScales = (params.adaptiveThreshWinSizeMax - params.adaptiveThreshWinSizeMin) /
                      params.adaptiveThreshWinSizeStep + 1;

    // if only one scale
    if(nScales == 1) {
        int scale = params.adaptiveThreshWinSizeMin;
        // treshold
        Mat thresh;
        _threshold(grey, thresh, scale, params.adaptiveThreshConstant);

        // detect rectangles
        vector< vector< Point2f > > currentCandidates;
        vector< vector< Point > > currentContours;
        _findMarkerContours(thresh, currentCandidates, currentContours,
                            params.minMarkerPerimeterRate, params.maxMarkerPerimeterRate,
                            params.polygonalApproxAccuracyRate, params.minCornerDistanceRate,
                            params.minDistanceToBorder);

        // join candidates
        for(unsigned int i = 0; i < currentCandidates.size(); i++) {
            candidates.push_back(currentCandidates[i]);
            contours.push_back(currentContours[i]);
        }
    }

    // if more than one scale, do it in parallel
    else {

        vector< vector< vector< Point2f > > > candidatesArrays(nScales);
        vector< vector< vector< Point > > > contoursArrays(nScales);

        ////for each value in the interval of thresholding window sizes
        // for(int i = 0; i < nScales; i++) {
        //    int currScale = params.adaptiveThreshWinSizeMin + i*params.adaptiveThreshWinSizeStep;
        //    // treshold
        //    Mat thresh;
        //    _threshold(grey, thresh, currScale, params.adaptiveThreshConstant);
        //    // detect rectangles
        //    _findMarkerContours(thresh, candidatesArrays[i], contoursArrays[i],
        // params.minMarkerPerimeterRate,
        //                        params.maxMarkerPerimeterRate, params.polygonalApproxAccuracyRate,
        //                        params.minCornerDistance, params.minDistanceToBorder);
        //}

        // this is the parallel call for the previous commented loop (result is equivalent)
        parallel_for_(Range(0, nScales), DetectInitialCandidatesParallel(&grey, &candidatesArrays,
                                                                         &contoursArrays, &params));

        // join candidates
        for(int i = 0; i < nScales; i++) {
            for(unsigned int j = 0; j < candidatesArrays[i].size(); j++) {
                candidates.push_back(candidatesArrays[i][j]);
                contours.push_back(contoursArrays[i][j]);
            }
        }
    }
}


/**
 * @brief Detect square candidates in the input image
 */
static void _detectCandidates(InputArray _image, OutputArrayOfArrays _candidates,
                              OutputArrayOfArrays _contours, DetectorParameters params) {

    Mat image = _image.getMat();
    CV_Assert(image.total() != 0);

    /// 1. CONVERT TO GRAY
    Mat grey;
    _convertToGrey(image, grey);

    vector< vector< Point2f > > candidates;
    vector< vector< Point > > contours;
    /// 2. DETECT FIRST SET OF CANDIDATES
    _detectInitialCandidates(grey, candidates, contours, params);

    /// 3. SORT CORNERS
    _reorderCandidatesCorners(candidates);

    /// 4. FILTER OUT NEAR CANDIDATE PAIRS
    vector< vector< Point2f > > candidatesOut;
    vector< vector< Point > > contoursOut;
    _filterTooCloseCandidates(candidates, candidatesOut, contours, contoursOut,
                              params.minMarkerDistanceRate);

    // parse output
    _candidates.create((int)candidatesOut.size(), 1, CV_32FC2);
    _contours.create((int)contoursOut.size(), 1, CV_32SC2);
    for(int i = 0; i < (int)candidatesOut.size(); i++) {
        _candidates.create(4, 1, CV_32FC2, i, true);
        Mat m = _candidates.getMat(i);
        for(int j = 0; j < 4; j++)
            m.ptr< Vec2f >(0)[j] = candidatesOut[i][j];

        _contours.create((int)contoursOut[i].size(), 1, CV_32SC2, i, true);
        Mat c = _contours.getMat(i);
        for(unsigned int j = 0; j < contoursOut[i].size(); j++)
            c.ptr< Point2i >()[j] = contoursOut[i][j];
    }
}


/**
  * @brief Given an input image and candidate corners, extract the bits of the candidate, including
  * the border bits
  */
static Mat _extractBits(InputArray _image, InputArray _corners, int markerSize,
                        int markerBorderBits, int cellSize, double cellMarginRate,
                        double minStdDevOtsu) {

    CV_Assert(_image.getMat().channels() == 1);
    CV_Assert(_corners.total() == 4);
    CV_Assert(markerBorderBits > 0 && cellSize > 0 && cellMarginRate >= 0 && cellMarginRate <= 1);
    CV_Assert(minStdDevOtsu >= 0);

    // number of bits in the marker
    int markerSizeWithBorders = markerSize + 2 * markerBorderBits;
    int cellMarginPixels = int(cellMarginRate * cellSize);

    Mat resultImg; // marker image after removing perspective
    int resultImgSize = markerSizeWithBorders * cellSize;
    Mat resultImgCorners(4, 1, CV_32FC2);
    resultImgCorners.ptr< Point2f >(0)[0] = Point2f(0, 0);
    resultImgCorners.ptr< Point2f >(0)[1] = Point2f((float)resultImgSize - 1, 0);
    resultImgCorners.ptr< Point2f >(0)[2] =
        Point2f((float)resultImgSize - 1, (float)resultImgSize - 1);
    resultImgCorners.ptr< Point2f >(0)[3] = Point2f(0, (float)resultImgSize - 1);

    // remove perspective
    Mat transformation = getPerspectiveTransform(_corners, resultImgCorners);
    warpPerspective(_image, resultImg, transformation, Size(resultImgSize, resultImgSize),
                    INTER_NEAREST);

    // output image containing the bits
    Mat bits(markerSizeWithBorders, markerSizeWithBorders, CV_8UC1, Scalar::all(0));

    // check if standard deviation is enough to apply Otsu
    // if not enough, it probably means all bits are the same color (black or white)
    Mat mean, stddev;
    // Remove some border just to avoid border noise from perspective transformation
    Mat innerRegion = resultImg.colRange(cellSize / 2, resultImg.cols - cellSize / 2)
                          .rowRange(cellSize / 2, resultImg.rows - cellSize / 2);
    meanStdDev(innerRegion, mean, stddev);
    if(stddev.ptr< double >(0)[0] < minStdDevOtsu) {
        // all black or all white, depending on mean value
        if(mean.ptr< double >(0)[0] > 127)
            bits.setTo(1);
        else
            bits.setTo(0);
        return bits;
    }

    // now extract code, first threshold using Otsu
    threshold(resultImg, resultImg, 125, 255, THRESH_BINARY | THRESH_OTSU);

    // for each cell
    for(int y = 0; y < markerSizeWithBorders; y++) {
        for(int x = 0; x < markerSizeWithBorders; x++) {
            int Xstart = x * (cellSize) + cellMarginPixels;
            int Ystart = y * (cellSize) + cellMarginPixels;
            Mat square = resultImg(Rect(Xstart, Ystart, cellSize - 2 * cellMarginPixels,
                                        cellSize - 2 * cellMarginPixels));
            // count white pixels on each cell to assign its value
            unsigned int nZ = countNonZero(square);
            if(nZ > square.total() / 2) bits.at< unsigned char >(y, x) = 1;
        }
    }

    return bits;
}



/**
  * @brief Return number of erroneous bits in border, i.e. number of white bits in border.
  */
static int _getBorderErrors(const Mat &bits, int markerSize, int borderSize) {

    int sizeWithBorders = markerSize + 2 * borderSize;

    CV_Assert(markerSize > 0 && bits.cols == sizeWithBorders && bits.rows == sizeWithBorders);

    int totalErrors = 0;
    for(int y = 0; y < sizeWithBorders; y++) {
        for(int k = 0; k < borderSize; k++) {
            if(bits.ptr< unsigned char >(y)[k] != 0) totalErrors++;
            if(bits.ptr< unsigned char >(y)[sizeWithBorders - 1 - k] != 0) totalErrors++;
        }
    }
    for(int x = borderSize; x < sizeWithBorders - borderSize; x++) {
        for(int k = 0; k < borderSize; k++) {
            if(bits.ptr< unsigned char >(k)[x] != 0) totalErrors++;
            if(bits.ptr< unsigned char >(sizeWithBorders - 1 - k)[x] != 0) totalErrors++;
        }
    }
    return totalErrors;
}


/**
 * @brief Tries to identify one candidate given the dictionary
 */
static bool _identifyOneCandidate(const Dictionary &dictionary, InputArray _image,
                                  InputOutputArray _corners, int &idx, DetectorParameters params) {

    CV_Assert(_corners.total() == 4);
    CV_Assert(_image.getMat().total() != 0);
    CV_Assert(params.markerBorderBits > 0);

    // get bits
    Mat candidateBits =
        _extractBits(_image, _corners, dictionary.markerSize, params.markerBorderBits,
                     params.perspectiveRemovePixelPerCell,
                     params.perspectiveRemoveIgnoredMarginPerCell, params.minOtsuStdDev);

    // analyze border bits
    int maximumErrorsInBorder =
        int(dictionary.markerSize * dictionary.markerSize * params.maxErroneousBitsInBorderRate);
    int borderErrors =
        _getBorderErrors(candidateBits, dictionary.markerSize, params.markerBorderBits);
    if(borderErrors > maximumErrorsInBorder) return false; // border is wrong

    // take only inner bits
    Mat onlyBits =
        candidateBits.rowRange(params.markerBorderBits,
                               candidateBits.rows - params.markerBorderBits)
            .colRange(params.markerBorderBits, candidateBits.rows - params.markerBorderBits);

    // try to indentify the marker
    int rotation;
    if(!dictionary.identify(onlyBits, idx, rotation, params.errorCorrectionRate))
        return false;
    else {
        // shift corner positions to the correct rotation
        if(rotation != 0) {
            Mat copyPoints = _corners.getMat().clone();
            for(int j = 0; j < 4; j++)
                _corners.getMat().ptr< Point2f >(0)[j] =
                    copyPoints.ptr< Point2f >(0)[(j + 4 - rotation) % 4];
        }
        return true;
    }
}


/**
  * ParallelLoopBody class for the parallelization of the marker identification step
  * Called from function _identifyCandidates()
  */
class IdentifyCandidatesParallel : public ParallelLoopBody {
    public:
    IdentifyCandidatesParallel(const Mat *_grey, InputArrayOfArrays _candidates,
                               InputArrayOfArrays _contours, const Dictionary *_dictionary,
                               vector< int > *_idsTmp, vector< char > *_validCandidates,
                               DetectorParameters *_params)
        : grey(_grey), candidates(_candidates), contours(_contours), dictionary(_dictionary),
          idsTmp(_idsTmp), validCandidates(_validCandidates), params(_params) {}

    void operator()(const Range &range) const {
        const int begin = range.start;
        const int end = range.end;

        for(int i = begin; i < end; i++) {
            int currId;
            Mat currentCandidate = candidates.getMat(i);
            if(_identifyOneCandidate(*dictionary, *grey, currentCandidate, currId, *params)) {
                (*validCandidates)[i] = 1;
                (*idsTmp)[i] = currId;
            }
        }
    }

    private:
    IdentifyCandidatesParallel &operator=(const IdentifyCandidatesParallel &); // to quiet MSVC

    const Mat *grey;
    InputArrayOfArrays candidates, contours;
    const Dictionary *dictionary;
    vector< int > *idsTmp;
    vector< char > *validCandidates;
    DetectorParameters *params;
};



/**
 * @brief Identify square candidates according to a marker dictionary
 */
static void _identifyCandidates(InputArray _image, InputArrayOfArrays _candidates,
                                InputArrayOfArrays _contours, const Dictionary &dictionary,
                                OutputArrayOfArrays _accepted, OutputArray _ids,
                                DetectorParameters params,
                                OutputArrayOfArrays _rejected = noArray()) {

    int ncandidates = (int)_candidates.total();

    vector< Mat > accepted;
    vector< Mat > rejected;
    vector< int > ids;

    CV_Assert(_image.getMat().total() != 0);

    Mat grey;
    _convertToGrey(_image.getMat(), grey);

    vector< int > idsTmp(ncandidates, -1);
    vector< char > validCandidates(ncandidates, 0);

    //// Analyze each of the candidates
    // for (int i = 0; i < ncandidates; i++) {
    //    int currId = i;
    //    Mat currentCandidate = _candidates.getMat(i);
    //    if (_identifyOneCandidate(dictionary, grey, currentCandidate, currId, params)) {
    //        validCandidates[i] = 1;
    //        idsTmp[i] = currId;
    //    }
    //}

    // this is the parallel call for the previous commented loop (result is equivalent)
    parallel_for_(Range(0, ncandidates),
                  IdentifyCandidatesParallel(&grey, _candidates, _contours, &dictionary, &idsTmp,
                                             &validCandidates, &params));

    for(int i = 0; i < ncandidates; i++) {
        if(validCandidates[i] == 1) {
            accepted.push_back(_candidates.getMat(i));
            ids.push_back(idsTmp[i]);
        } else {
            rejected.push_back(_candidates.getMat(i));
        }
    }

    // parse output
    _accepted.create((int)accepted.size(), 1, CV_32FC2);
    for(unsigned int i = 0; i < accepted.size(); i++) {
        _accepted.create(4, 1, CV_32FC2, i, true);
        Mat m = _accepted.getMat(i);
        accepted[i].copyTo(m);
    }

    _ids.create((int)ids.size(), 1, CV_32SC1);
    for(unsigned int i = 0; i < ids.size(); i++)
        _ids.getMat().ptr< int >(0)[i] = ids[i];

    if(_rejected.needed()) {
        _rejected.create((int)rejected.size(), 1, CV_32FC2);
        for(unsigned int i = 0; i < rejected.size(); i++) {
            _rejected.create(4, 1, CV_32FC2, i, true);
            Mat m = _rejected.getMat(i);
            rejected[i].copyTo(m);
        }
    }
}


/**
  * @brief Final filter of markers after its identification
  */
static void _filterDetectedMarkers(InputArrayOfArrays _inCorners, InputArray _inIds,
                                   OutputArrayOfArrays _outCorners, OutputArray _outIds) {

    CV_Assert(_inCorners.total() == _inIds.total());
    if(_inCorners.total() == 0) return;

    // mark markers that will be removed
    vector< bool > toRemove(_inCorners.total(), false);
    bool atLeastOneRemove = false;

    // remove repeated markers with same id, if one contains the other (doble border bug)
    for(unsigned int i = 0; i < _inCorners.total() - 1; i++) {
        for(unsigned int j = i + 1; j < _inCorners.total(); j++) {
            if(_inIds.getMat().ptr< int >(0)[i] != _inIds.getMat().ptr< int >(0)[j]) continue;

            // check if first marker is inside second
            bool inside = true;
            for(unsigned int p = 0; p < 4; p++) {
                Point2f point = _inCorners.getMat(j).ptr< Point2f >(0)[p];
                if(pointPolygonTest(_inCorners.getMat(i), point, false) < 0) {
                    inside = false;
                    break;
                }
            }
            if(inside) {
                toRemove[j] = true;
                atLeastOneRemove = true;
                continue;
            }

            // check the second marker
            inside = true;
            for(unsigned int p = 0; p < 4; p++) {
                Point2f point = _inCorners.getMat(i).ptr< Point2f >(0)[p];
                if(pointPolygonTest(_inCorners.getMat(j), point, false) < 0) {
                    inside = false;
                    break;
                }
            }
            if(inside) {
                toRemove[i] = true;
                atLeastOneRemove = true;
                continue;
            }
        }
    }

    // parse output
    if(atLeastOneRemove) {
        vector< Mat > filteredCorners;
        vector< int > filteredIds;

        for(unsigned int i = 0; i < toRemove.size(); i++) {
            if(!toRemove[i]) {
                filteredCorners.push_back(_inCorners.getMat(i).clone());
                filteredIds.push_back(_inIds.getMat().ptr< int >(0)[i]);
            }
        }

        _outIds.create((int)filteredIds.size(), 1, CV_32SC1);
        for(unsigned int i = 0; i < filteredIds.size(); i++)
            _outIds.getMat().ptr< int >(0)[i] = filteredIds[i];

        _outCorners.create((int)filteredCorners.size(), 1, CV_32FC2);
        for(unsigned int i = 0; i < filteredCorners.size(); i++) {
            _outCorners.create(4, 1, CV_32FC2, i, true);
            filteredCorners[i].copyTo(_outCorners.getMat(i));
        }
    }
}



/**
  * @brief Return object points for the system centered in a single marker, given the marker length
  */
static void _getSingleMarkerObjectPoints(float markerLength, OutputArray _objPoints) {

    CV_Assert(markerLength > 0);

    _objPoints.create(4, 1, CV_32FC3);
    Mat objPoints = _objPoints.getMat();
    // set coordinate system in the middle of the marker, with Z pointing out
    objPoints.ptr< Vec3f >(0)[0] = Vec3f(-markerLength / 2.f, markerLength / 2.f, 0);
    objPoints.ptr< Vec3f >(0)[1] = Vec3f(markerLength / 2.f, markerLength / 2.f, 0);
    objPoints.ptr< Vec3f >(0)[2] = Vec3f(markerLength / 2.f, -markerLength / 2.f, 0);
    objPoints.ptr< Vec3f >(0)[3] = Vec3f(-markerLength / 2.f, -markerLength / 2.f, 0);
}




/**
  * ParallelLoopBody class for the parallelization of the marker corner subpixel refinement
  * Called from function detectMarkers()
  */
class MarkerSubpixelParallel : public ParallelLoopBody {
    public:
    MarkerSubpixelParallel(const Mat *_grey, OutputArrayOfArrays _corners,
                           DetectorParameters *_params)
        : grey(_grey), corners(_corners), params(_params) {}

    void operator()(const Range &range) const {
        const int begin = range.start;
        const int end = range.end;

        for(int i = begin; i < end; i++) {
            cornerSubPix(*grey, corners.getMat(i),
                         Size(params->cornerRefinementWinSize, params->cornerRefinementWinSize),
                         Size(-1, -1), TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS,
                                                    params->cornerRefinementMaxIterations,
                                                    params->cornerRefinementMinAccuracy));
        }
    }

    private:
    MarkerSubpixelParallel &operator=(const MarkerSubpixelParallel &); // to quiet MSVC

    const Mat *grey;
    OutputArrayOfArrays corners;
    DetectorParameters *params;
};



/**
  */
void detectMarkers(InputArray _image, Dictionary dictionary, OutputArrayOfArrays _corners,
                   OutputArray _ids, DetectorParameters params,
                   OutputArrayOfArrays _rejectedImgPoints) {

    CV_Assert(_image.getMat().total() != 0);

    Mat grey;
    _convertToGrey(_image.getMat(), grey);

    /// STEP 1: Detect marker candidates
    vector< vector< Point2f > > candidates;
    vector< vector< Point > > contours;
    _detectCandidates(grey, candidates, contours, params);

    /// STEP 2: Check candidate codification (identify markers)
    _identifyCandidates(grey, candidates, contours, dictionary, _corners, _ids, params,
                        _rejectedImgPoints);

    /// STEP 3: Filter detected markers;
    _filterDetectedMarkers(_corners, _ids, _corners, _ids);

    /// STEP 4: Corner refinement
    if(params.doCornerRefinement) {
        CV_Assert(params.cornerRefinementWinSize > 0 && params.cornerRefinementMaxIterations > 0 &&
                  params.cornerRefinementMinAccuracy > 0);

        //// do corner refinement for each of the detected markers
        // for (unsigned int i = 0; i < _corners.total(); i++) {
        //    cornerSubPix(grey, _corners.getMat(i),
        //                 Size(params.cornerRefinementWinSize, params.cornerRefinementWinSize),
        //                 Size(-1, -1), TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS,
        //                                            params.cornerRefinementMaxIterations,
        //                                            params.cornerRefinementMinAccuracy));
        //}

        // this is the parallel call for the previous commented loop (result is equivalent)
        parallel_for_(Range(0, (int)_corners.total()),
                      MarkerSubpixelParallel(&grey, _corners, &params));
    }
}



/**
  * ParallelLoopBody class for the parallelization of the single markers pose estimation
  * Called from function estimatePoseSingleMarkers()
  */
class SinglePoseEstimationParallel : public ParallelLoopBody {
    public:
    SinglePoseEstimationParallel(Mat *_markerObjPoints, InputArrayOfArrays _corners,
                                 InputArray _cameraMatrix, InputArray _distCoeffs,
                                 OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs)
        : markerObjPoints(_markerObjPoints), corners(_corners), cameraMatrix(_cameraMatrix),
          distCoeffs(_distCoeffs), rvecs(_rvecs), tvecs(_tvecs) {}

    void operator()(const Range &range) const {
        const int begin = range.start;
        const int end = range.end;

        for(int i = begin; i < end; i++) {
            solvePnP(*markerObjPoints, corners.getMat(i), cameraMatrix, distCoeffs, rvecs.getMat(i),
                     tvecs.getMat(i));
        }
    }

    private:
    SinglePoseEstimationParallel &operator=(const SinglePoseEstimationParallel &); // to quiet MSVC

    Mat *markerObjPoints;
    InputArrayOfArrays corners;
    InputArray cameraMatrix, distCoeffs;
    OutputArrayOfArrays rvecs, tvecs;
};




/**
  */
void estimatePoseSingleMarkers(InputArrayOfArrays _corners, float markerLength,
                               InputArray _cameraMatrix, InputArray _distCoeffs,
                               OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs) {

    CV_Assert(markerLength > 0);

    Mat markerObjPoints;
    _getSingleMarkerObjectPoints(markerLength, markerObjPoints);
    int nMarkers = (int)_corners.total();
    _rvecs.create(nMarkers, 1, CV_32FC1);
    _tvecs.create(nMarkers, 1, CV_32FC1);

    for(int i = 0; i < nMarkers; i++) {
        _rvecs.create(3, 1, CV_64FC1, i, true);
        _tvecs.create(3, 1, CV_64FC1, i, true);
    }

    //// for each marker, calculate its pose
    // for (int i = 0; i < nMarkers; i++) {
    //    solvePnP(markerObjPoints, _corners.getMat(i), _cameraMatrix, _distCoeffs,
    //             _rvecs.getMat(i), _tvecs.getMat(i));
    //}

    // this is the parallel call for the previous commented loop (result is equivalent)
    parallel_for_(Range(0, nMarkers),
                  SinglePoseEstimationParallel(&markerObjPoints, _corners, _cameraMatrix,
                                               _distCoeffs, _rvecs, _tvecs));
}



/**
  * @brief Given a board configuration and a set of detected markers, returns the corresponding
  * image points and object points to call solvePnP
  */
static void _getBoardObjectAndImagePoints(const Board &board, InputArray _detectedIds,
                                          InputArrayOfArrays _detectedCorners,
                                          OutputArray _imgPoints, OutputArray _objPoints) {

    CV_Assert(board.ids.size() == board.objPoints.size());
    CV_Assert(_detectedIds.total() == _detectedCorners.total());

    int nDetectedMarkers = (int)_detectedIds.total();

    vector< Point3f > objPnts;
    objPnts.reserve(nDetectedMarkers);

    vector< Point2f > imgPnts;
    imgPnts.reserve(nDetectedMarkers);

    // look for detected markers that belong to the board and get their information
    for(int i = 0; i < nDetectedMarkers; i++) {
        int currentId = _detectedIds.getMat().ptr< int >(0)[i];
        for(unsigned int j = 0; j < board.ids.size(); j++) {
            if(currentId == board.ids[j]) {
                for(int p = 0; p < 4; p++) {
                    objPnts.push_back(board.objPoints[j][p]);
                    imgPnts.push_back(_detectedCorners.getMat(i).ptr< Point2f >(0)[p]);
                }
            }
        }
    }

    // create output
    _objPoints.create((int)objPnts.size(), 1, CV_32FC3);
    for(unsigned int i = 0; i < objPnts.size(); i++)
        _objPoints.getMat().ptr< Point3f >(0)[i] = objPnts[i];

    _imgPoints.create((int)objPnts.size(), 1, CV_32FC2);
    for(unsigned int i = 0; i < imgPnts.size(); i++)
        _imgPoints.getMat().ptr< Point2f >(0)[i] = imgPnts[i];
}



/**
  * Project board markers that are not included in the list of detected markers
  */
static void _projectUndetectedMarkers(const Board &board, InputOutputArrayOfArrays _detectedCorners,
                                      InputOutputArray _detectedIds, InputArray _cameraMatrix,
                                      InputArray _distCoeffs,
                                      OutputArrayOfArrays _undetectedMarkersProjectedCorners,
                                      OutputArray _undetectedMarkersIds) {

    // first estimate board pose with the current avaible markers
    Mat rvec, tvec;
    int boardDetectedMarkers;
    boardDetectedMarkers = aruco::estimatePoseBoard(_detectedCorners, _detectedIds, board,
                                                    _cameraMatrix, _distCoeffs, rvec, tvec);

    // at least one marker from board so rvec and tvec are valid
    if(boardDetectedMarkers == 0) return;

    // search undetected markers and project them using the previous pose
    vector< vector< Point2f > > undetectedCorners;
    vector< int > undetectedIds;
    for(unsigned int i = 0; i < board.ids.size(); i++) {
        int foundIdx = -1;
        for(unsigned int j = 0; j < _detectedIds.total(); j++) {
            if(board.ids[i] == _detectedIds.getMat().ptr< int >()[j]) {
                foundIdx = j;
                break;
            }
        }

        // not detected
        if(foundIdx == -1) {
            undetectedCorners.push_back(vector< Point2f >());
            undetectedIds.push_back(board.ids[i]);
            projectPoints(board.objPoints[i], rvec, tvec, _cameraMatrix, _distCoeffs,
                          undetectedCorners.back());
        }
    }


    // parse output
    _undetectedMarkersIds.create((int)undetectedIds.size(), 1, CV_32SC1);
    for(unsigned int i = 0; i < undetectedIds.size(); i++)
        _undetectedMarkersIds.getMat().ptr< int >(0)[i] = undetectedIds[i];

    _undetectedMarkersProjectedCorners.create((int)undetectedCorners.size(), 1, CV_32FC2);
    for(unsigned int i = 0; i < undetectedCorners.size(); i++) {
        _undetectedMarkersProjectedCorners.create(4, 1, CV_32FC2, i, true);
        for(int j = 0; j < 4; j++) {
            _undetectedMarkersProjectedCorners.getMat(i).ptr< Point2f >()[j] =
                undetectedCorners[i][j];
        }
    }
}



/**
  * Interpolate board markers that are not included in the list of detected markers using
  * global homography
  */
static void _projectUndetectedMarkers(const Board &board, InputOutputArrayOfArrays _detectedCorners,
                                      InputOutputArray _detectedIds,
                                      OutputArrayOfArrays _undetectedMarkersProjectedCorners,
                                      OutputArray _undetectedMarkersIds) {


    // check board points are in the same plane, if not, global homography cannot be applied
    CV_Assert(board.objPoints.size() > 0);
    CV_Assert(board.objPoints[0].size() > 0);
    float boardZ = board.objPoints[0][0].z;
    for(unsigned int i = 0; i < board.objPoints.size(); i++) {
        for(unsigned int j = 0; j < board.objPoints[i].size(); j++) {
            CV_Assert(boardZ == board.objPoints[i][j].z);
        }
    }

    vector< Point2f > detectedMarkersObj2DAll; // Object coordinates (without Z) of all the detected
                                               // marker corners in a single vector
    vector< Point2f > imageCornersAll; // Image corners of all detected markers in a single vector
    vector< vector< Point2f > > undetectedMarkersObj2D; // Object coordinates (without Z) of all
                                                        // missing markers in different vectors
    vector< int > undetectedMarkersIds; // ids of missing markers
    // find markers included in board, and missing markers from board. Fill the previous vectors
    for(unsigned int j = 0; j < board.ids.size(); j++) {
        bool found = false;
        for(unsigned int i = 0; i < _detectedIds.total(); i++) {
            if(_detectedIds.getMat().ptr< int >()[i] == board.ids[j]) {
                for(int c = 0; c < 4; c++) {
                    imageCornersAll.push_back(_detectedCorners.getMat(i).ptr< Point2f >()[c]);
                    detectedMarkersObj2DAll.push_back(
                        Point2f(board.objPoints[j][c].x, board.objPoints[j][c].y));
                }
                found = true;
                break;
            }
        }
        if(!found) {
            undetectedMarkersObj2D.push_back(vector< Point2f >());
            for(int c = 0; c < 4; c++) {
                undetectedMarkersObj2D.back().push_back(
                    Point2f(board.objPoints[j][c].x, board.objPoints[j][c].y));
            }
            undetectedMarkersIds.push_back(board.ids[j]);
        }
    }
    if(imageCornersAll.size() == 0) return;

    // get homography from detected markers
    Mat transformation = findHomography(detectedMarkersObj2DAll, imageCornersAll);

    _undetectedMarkersProjectedCorners.create((int)undetectedMarkersIds.size(), 1, CV_32FC2);

    // for each undetected marker, apply transformation
    for(unsigned int i = 0; i < undetectedMarkersObj2D.size(); i++) {
        Mat projectedMarker;
        perspectiveTransform(undetectedMarkersObj2D[i], projectedMarker, transformation);

        _undetectedMarkersProjectedCorners.create(4, 1, CV_32FC2, i, true);
        projectedMarker.copyTo(_undetectedMarkersProjectedCorners.getMat(i));
    }

    _undetectedMarkersIds.create((int)undetectedMarkersIds.size(), 1, CV_32SC1);
    for(unsigned int i = 0; i < undetectedMarkersIds.size(); i++)
        _undetectedMarkersIds.getMat().ptr< int >(0)[i] = undetectedMarkersIds[i];
}



/**
  */
void refineDetectedMarkers(InputArray _image, const Board &board,
                           InputOutputArrayOfArrays _detectedCorners, InputOutputArray _detectedIds,
                           InputOutputArray _rejectedCorners, InputArray _cameraMatrix,
                           InputArray _distCoeffs, float minRepDistance, float errorCorrectionRate,
                           bool checkAllOrders, OutputArray _recoveredIdxs,
                           DetectorParameters params) {

    CV_Assert(minRepDistance > 0);

    if(_detectedIds.total() == 0 || _rejectedCorners.total() == 0) return;

    // get projections of missing markers in the board
    vector< vector< Point2f > > undetectedMarkersCorners;
    vector< int > undetectedMarkersIds;
    if(_cameraMatrix.total() != 0) {
        // reproject based on camera projection model
        _projectUndetectedMarkers(board, _detectedCorners, _detectedIds, _cameraMatrix, _distCoeffs,
                                  undetectedMarkersCorners, undetectedMarkersIds);

    } else {
        // reproject based on global homography
        _projectUndetectedMarkers(board, _detectedCorners, _detectedIds, undetectedMarkersCorners,
                                  undetectedMarkersIds);
    }

    // list of missing markers indicating if they have been assigned to a candidate
    vector< bool > alreadyIdentified(_rejectedCorners.total(), false);

    // maximum bits that can be corrected
    int maxCorrectionRecalculated =
        int(double(board.dictionary.maxCorrectionBits) * errorCorrectionRate);

    Mat grey;
    _convertToGrey(_image, grey);

    // vector of final detected marker corners and ids
    vector< Mat > finalAcceptedCorners;
    vector< int > finalAcceptedIds;
    // fill with the current markers
    finalAcceptedCorners.resize(_detectedCorners.total());
    finalAcceptedIds.resize(_detectedIds.total());
    for(unsigned int i = 0; i < _detectedIds.total(); i++) {
        finalAcceptedCorners[i] = _detectedCorners.getMat(i).clone();
        finalAcceptedIds[i] = _detectedIds.getMat().ptr< int >()[i];
    }
    vector< int > recoveredIdxs; // original indexes of accepted markers in _rejectedCorners

    // for each missing marker, try to find a correspondence
    for(unsigned int i = 0; i < undetectedMarkersIds.size(); i++) {

        // best match at the moment
        int closestCandidateIdx = -1;
        double closestCandidateDistance = minRepDistance * minRepDistance + 1;
        Mat closestRotatedMarker;

        for(unsigned int j = 0; j < _rejectedCorners.total(); j++) {
            if(alreadyIdentified[j]) continue;

            // check distance
            double minDistance = closestCandidateDistance + 1;
            bool valid = false;
            int validRot = 0;
            for(int c = 0; c < 4; c++) { // first corner in rejected candidate
                double currentMaxDistance = 0;
                for(int k = 0; k < 4; k++) {
                    Point2f rejCorner = _rejectedCorners.getMat(j).ptr< Point2f >()[(c + k) % 4];
                    Point2f distVector = undetectedMarkersCorners[i][k] - rejCorner;
                    double cornerDist = distVector.x * distVector.x + distVector.y * distVector.y;
                    currentMaxDistance = max(currentMaxDistance, cornerDist);
                }
                // if distance is better than current best distance
                if(currentMaxDistance < closestCandidateDistance) {
                    valid = true;
                    validRot = c;
                    minDistance = currentMaxDistance;
                }
                if(!checkAllOrders) break;
            }

            if(!valid) continue;

            // apply rotation
            Mat rotatedMarker;
            if(checkAllOrders) {
                rotatedMarker = Mat(4, 1, CV_32FC2);
                for(int c = 0; c < 4; c++)
                    rotatedMarker.ptr< Point2f >()[c] =
                        _rejectedCorners.getMat(j).ptr< Point2f >()[(c + 4 + validRot) % 4];
            }
            else rotatedMarker = _rejectedCorners.getMat(j);

            // last filter, check if inner code is close enough to the assigned marker code
            int codeDistance = 0;
            // if errorCorrectionRate, dont check code
            if(errorCorrectionRate >= 0) {

                // extract bits
                Mat bits = _extractBits(
                    grey, rotatedMarker, board.dictionary.markerSize, params.markerBorderBits,
                    params.perspectiveRemovePixelPerCell,
                    params.perspectiveRemoveIgnoredMarginPerCell, params.minOtsuStdDev);

                Mat onlyBits =
                    bits.rowRange(params.markerBorderBits, bits.rows - params.markerBorderBits)
                        .colRange(params.markerBorderBits, bits.rows - params.markerBorderBits);

                codeDistance =
                    board.dictionary.getDistanceToId(onlyBits, undetectedMarkersIds[i], false);
            }

            // if everythin is ok, assign values to current best match
            if(errorCorrectionRate < 0 || codeDistance < maxCorrectionRecalculated) {
                closestCandidateIdx = j;
                closestCandidateDistance = minDistance;
                closestRotatedMarker = rotatedMarker;
            }
        }

        // if at least one good match, we have rescue the missing marker
        if(closestCandidateIdx >= 0) {

            // subpixel refinement
            if(params.doCornerRefinement) {
                CV_Assert(params.cornerRefinementWinSize > 0 &&
                          params.cornerRefinementMaxIterations > 0 &&
                          params.cornerRefinementMinAccuracy > 0);
                cornerSubPix(grey, closestRotatedMarker,
                             Size(params.cornerRefinementWinSize, params.cornerRefinementWinSize),
                             Size(-1, -1), TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS,
                                                        params.cornerRefinementMaxIterations,
                                                        params.cornerRefinementMinAccuracy));
            }

            // remove from rejected
            alreadyIdentified[closestCandidateIdx] = true;

            // add to detected
            finalAcceptedCorners.push_back(closestRotatedMarker);
            finalAcceptedIds.push_back(undetectedMarkersIds[i]);

            // add the original index of the candidate
            recoveredIdxs.push_back(closestCandidateIdx);
        }
    }

    // parse output
    if(finalAcceptedIds.size() != _detectedIds.total()) {
        _detectedCorners.clear();
        _detectedIds.clear();

        // parse output
        _detectedIds.create((int)finalAcceptedIds.size(), 1, CV_32SC1);
        for(unsigned int i = 0; i < finalAcceptedIds.size(); i++)
            _detectedIds.getMat().ptr< int >(0)[i] = finalAcceptedIds[i];

        _detectedCorners.create((int)finalAcceptedCorners.size(), 1, CV_32FC2);
        for(unsigned int i = 0; i < finalAcceptedCorners.size(); i++) {
            _detectedCorners.create(4, 1, CV_32FC2, i, true);
            for(int j = 0; j < 4; j++) {
                _detectedCorners.getMat(i).ptr< Point2f >()[j] =
                    finalAcceptedCorners[i].ptr< Point2f >()[j];
            }
        }

        // recalculate _rejectedCorners based on alreadyIdentified
        vector< Mat > finalRejected;
        for(unsigned int i = 0; i < alreadyIdentified.size(); i++) {
            if(!alreadyIdentified[i]) {
                finalRejected.push_back(_rejectedCorners.getMat(i).clone());
            }
        }

        _rejectedCorners.clear();
        _rejectedCorners.create((int)finalRejected.size(), 1, CV_32FC2);
        for(unsigned int i = 0; i < finalRejected.size(); i++) {
            _rejectedCorners.create(4, 1, CV_32FC2, i, true);
            for(int j = 0; j < 4; j++) {
                _rejectedCorners.getMat(i).ptr< Point2f >()[j] =
                    finalRejected[i].ptr< Point2f >()[j];
            }
        }

        if(_recoveredIdxs.needed()) {
            _recoveredIdxs.create((int)recoveredIdxs.size(), 1, CV_32SC1);
            for(unsigned int i = 0; i < recoveredIdxs.size(); i++) {
                _recoveredIdxs.getMat().ptr< int >()[i] = recoveredIdxs[i];
            }
        }
    }
}




/**
  */
int estimatePoseBoard(InputArrayOfArrays _corners, InputArray _ids, const Board &board,
                      InputArray _cameraMatrix, InputArray _distCoeffs, OutputArray _rvec,
                      OutputArray _tvec) {

    CV_Assert(_corners.total() == _ids.total());

    // get object and image points for the solvePnP function
    Mat objPoints, imgPoints;
    _getBoardObjectAndImagePoints(board, _ids, _corners, imgPoints, objPoints);

    CV_Assert(imgPoints.total() == objPoints.total());

    if(objPoints.total() == 0) // 0 of the detected markers in board
        return 0;

    _rvec.create(3, 1, CV_64FC1);
    _tvec.create(3, 1, CV_64FC1);
    solvePnP(objPoints, imgPoints, _cameraMatrix, _distCoeffs, _rvec, _tvec);

    // divide by four since all the four corners are concatenated in the array for each marker
    return (int)objPoints.total() / 4;
}




/**
 */
void GridBoard::draw(Size outSize, OutputArray _img, int marginSize, int borderBits) {
    aruco::drawPlanarBoard((*this), outSize, _img, marginSize, borderBits);
}



/**
 */
GridBoard GridBoard::create(int markersX, int markersY, float markerLength, float markerSeparation,
                            Dictionary _dictionary) {

    GridBoard res;

    CV_Assert(markersX > 0 && markersY > 0 && markerLength > 0 && markerSeparation > 0);

    res._markersX = markersX;
    res._markersY = markersY;
    res._markerLength = markerLength;
    res._markerSeparation = markerSeparation;
    res.dictionary = _dictionary;

    int totalMarkers = markersX * markersY;
    res.ids.resize(totalMarkers);
    res.objPoints.reserve(totalMarkers);

    // fill ids with first identifiers
    for(int i = 0; i < totalMarkers; i++)
        res.ids[i] = i;

    // calculate Board objPoints
    float maxY = (float)markersY * markerLength + (markersY - 1) * markerSeparation;
    for(int y = 0; y < markersY; y++) {
        for(int x = 0; x < markersX; x++) {
            vector< Point3f > corners;
            corners.resize(4);
            corners[0] = Point3f(x * (markerLength + markerSeparation),
                                 maxY - y * (markerLength + markerSeparation), 0);
            corners[1] = corners[0] + Point3f(markerLength, 0, 0);
            corners[2] = corners[0] + Point3f(markerLength, -markerLength, 0);
            corners[3] = corners[0] + Point3f(0, -markerLength, 0);
            res.objPoints.push_back(corners);
        }
    }

    return res;
}



/**
 */
void drawDetectedMarkers(InputOutputArray _image, InputArrayOfArrays _corners,
                         InputArray _ids, Scalar borderColor) {


    CV_Assert(_image.getMat().total() != 0 &&
              (_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
    CV_Assert((_corners.total() == _ids.total()) || _ids.total() == 0);

    // calculate colors
    Scalar textColor, cornerColor;
    textColor = cornerColor = borderColor;
    swap(textColor.val[0], textColor.val[1]);     // text color just sawp G and R
    swap(cornerColor.val[1], cornerColor.val[2]); // corner color just sawp G and B

    int nMarkers = (int)_corners.total();
    for(int i = 0; i < nMarkers; i++) {
        Mat currentMarker = _corners.getMat(i);
        CV_Assert(currentMarker.total() == 4 && currentMarker.type() == CV_32FC2);

        // draw marker sides
        for(int j = 0; j < 4; j++) {
            Point2f p0, p1;
            p0 = currentMarker.ptr< Point2f >(0)[j];
            p1 = currentMarker.ptr< Point2f >(0)[(j + 1) % 4];
            line(_image, p0, p1, borderColor, 1);
        }
        // draw first corner mark
        rectangle(_image, currentMarker.ptr< Point2f >(0)[0] - Point2f(3, 3),
                  currentMarker.ptr< Point2f >(0)[0] + Point2f(3, 3), cornerColor, 1, LINE_AA);

        // draw ID
        if(_ids.total() != 0) {
            Point2f cent(0, 0);
            for(int p = 0; p < 4; p++)
                cent += currentMarker.ptr< Point2f >(0)[p];
            cent = cent / 4.;
            stringstream s;
            s << "id=" << _ids.getMat().ptr< int >(0)[i];
            putText(_image, s.str(), cent, FONT_HERSHEY_SIMPLEX, 0.5, textColor, 2);
        }
    }
}



/**
 */
void drawAxis(InputOutputArray _image, InputArray _cameraMatrix, InputArray _distCoeffs,
              InputArray _rvec, InputArray _tvec, float length) {

    CV_Assert(_image.getMat().total() != 0 &&
              (_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
    CV_Assert(length > 0);

    // project axis points
    vector< Point3f > axisPoints;
    axisPoints.push_back(Point3f(0, 0, 0));
    axisPoints.push_back(Point3f(length, 0, 0));
    axisPoints.push_back(Point3f(0, length, 0));
    axisPoints.push_back(Point3f(0, 0, length));
    vector< Point2f > imagePoints;
    projectPoints(axisPoints, _rvec, _tvec, _cameraMatrix, _distCoeffs, imagePoints);

    // draw axis lines
    line(_image, imagePoints[0], imagePoints[1], Scalar(0, 0, 255), 3);
    line(_image, imagePoints[0], imagePoints[2], Scalar(0, 255, 0), 3);
    line(_image, imagePoints[0], imagePoints[3], Scalar(255, 0, 0), 3);
}



/**
 */
void drawMarker(Dictionary dictionary, int id, int sidePixels, OutputArray _img, int borderBits) {
    dictionary.drawMarker(id, sidePixels, _img, borderBits);
}



/**
 */
void drawPlanarBoard(const Board &board, Size outSize, OutputArray _img, int marginSize,
                     int borderBits) {

    CV_Assert(outSize.area() > 0);
    CV_Assert(marginSize >= 0);

    _img.create(outSize, CV_8UC1);
    Mat out = _img.getMat();
    out.setTo(Scalar::all(255));
    Mat outNoMargins =
        out.colRange(marginSize, out.cols - marginSize).rowRange(marginSize, out.rows - marginSize);

    // calculate max and min values in XY plane
    CV_Assert(board.objPoints.size() > 0);
    float minX, maxX, minY, maxY;
    minX = maxX = board.objPoints[0][0].x;
    minY = maxY = board.objPoints[0][0].y;

    for(unsigned int i = 0; i < board.objPoints.size(); i++) {
        for(int j = 0; j < 4; j++) {
            minX = min(minX, board.objPoints[i][j].x);
            maxX = max(maxX, board.objPoints[i][j].x);
            minY = min(minY, board.objPoints[i][j].y);
            maxY = max(maxY, board.objPoints[i][j].y);
        }
    }

    float sizeX, sizeY;
    sizeX = maxX - minX;
    sizeY = maxY - minY;

    // proportion transformations
    float xReduction = sizeX / float(outNoMargins.cols);
    float yReduction = sizeY / float(outNoMargins.rows);

    // determine the zone where the markers are placed
    Mat markerZone;
    if(xReduction > yReduction) {
        int nRows = int(sizeY / xReduction);
        int rowsMargins = (outNoMargins.rows - nRows) / 2;
        markerZone = outNoMargins.rowRange(rowsMargins, outNoMargins.rows - rowsMargins);
    } else {
        int nCols = int(sizeX / yReduction);
        int colsMargins = (outNoMargins.cols - nCols) / 2;
        markerZone = outNoMargins.colRange(colsMargins, outNoMargins.cols - colsMargins);
    }

    // now paint each marker
    for(unsigned int m = 0; m < board.objPoints.size(); m++) {

        // transform corners to markerZone coordinates
        vector< Point2f > outCorners;
        outCorners.resize(4);
        for(int j = 0; j < 4; j++) {
            Point2f p0, p1, pf;
            p0 = Point2f(board.objPoints[m][j].x, board.objPoints[m][j].y);
            // remove negativity
            p1.x = p0.x - minX;
            p1.y = p0.y - minY;
            pf.x = p1.x * float(markerZone.cols - 1) / sizeX;
            pf.y = float(markerZone.rows - 1) - p1.y * float(markerZone.rows - 1) / sizeY;
            outCorners[j] = pf;
        }

        // get tiny marker
        int tinyMarkerSize = 10 * board.dictionary.markerSize + 2;
        Mat tinyMarker;
        board.dictionary.drawMarker(board.ids[m], tinyMarkerSize, tinyMarker, borderBits);

        // interpolate tiny marker to marker position in markerZone
        Mat inCorners(4, 1, CV_32FC2);
        inCorners.ptr< Point2f >(0)[0] = Point2f(0, 0);
        inCorners.ptr< Point2f >(0)[1] = Point2f((float)tinyMarker.cols, 0);
        inCorners.ptr< Point2f >(0)[2] = Point2f((float)tinyMarker.cols, (float)tinyMarker.rows);
        inCorners.ptr< Point2f >(0)[3] = Point2f(0, (float)tinyMarker.rows);

        // remove perspective
        Mat transformation = getPerspectiveTransform(inCorners, outCorners);
        Mat aux;
        const char borderValue = 127;
        warpPerspective(tinyMarker, aux, transformation, markerZone.size(), INTER_NEAREST,
                        BORDER_CONSTANT, Scalar::all(borderValue));

        // copy only not-border pixels
        for(int y = 0; y < aux.rows; y++) {
            for(int x = 0; x < aux.cols; x++) {
                if(aux.at< unsigned char >(y, x) == borderValue) continue;
                markerZone.at< unsigned char >(y, x) = aux.at< unsigned char >(y, x);
            }
        }
    }
}



/**
  */
double calibrateCameraAruco(InputArrayOfArrays _corners, InputArray _ids, InputArray _counter,
                            const Board &board, Size imageSize, InputOutputArray _cameraMatrix,
                            InputOutputArray _distCoeffs, OutputArrayOfArrays _rvecs,
                            OutputArrayOfArrays _tvecs, int flags, TermCriteria criteria) {

    // for each frame, get properly processed imagePoints and objectPoints for the calibrateCamera
    // function
    vector< Mat > processedObjectPoints, processedImagePoints;
    int nFrames = (int)_counter.total();
    int markerCounter = 0;
    for(int frame = 0; frame < nFrames; frame++) {
        int nMarkersInThisFrame = _counter.getMat().ptr< int >()[frame];
        vector< Mat > thisFrameCorners;
        vector< int > thisFrameIds;
        thisFrameCorners.reserve(nMarkersInThisFrame);
        thisFrameIds.reserve(nMarkersInThisFrame);
        for(int j = markerCounter; j < markerCounter + nMarkersInThisFrame; j++) {
            thisFrameCorners.push_back(_corners.getMat(j));
            thisFrameIds.push_back(_ids.getMat().ptr< int >()[j]);
        }
        markerCounter += nMarkersInThisFrame;
        Mat currentImgPoints, currentObjPoints;
        _getBoardObjectAndImagePoints(board, thisFrameIds, thisFrameCorners, currentImgPoints,
                                      currentObjPoints);
        if(currentImgPoints.total() > 0 && currentObjPoints.total() > 0) {
            processedImagePoints.push_back(currentImgPoints);
            processedObjectPoints.push_back(currentObjPoints);
        }
    }

    return calibrateCamera(processedObjectPoints, processedImagePoints, imageSize, _cameraMatrix,
                           _distCoeffs, _rvecs, _tvecs, flags, criteria);
}
}
}