test_layers.cpp 11 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include <opencv2/core/ocl.hpp>
#include <iostream>
#include "npy_blob.hpp"
46
#include <opencv2/dnn/all_layers.hpp>
47
#include <opencv2/ts/ocl_test.hpp>
48 49 50 51 52 53 54 55 56 57 58 59 60

namespace cvtest
{

using namespace cv;
using namespace cv::dnn;

template<typename TString>
static String _tf(TString filename)
{
    return (getOpenCVExtraDir() + "/dnn/layers/") + filename;
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

enum RunLayerMode
{
    ALLOC_ONLY = 1,
    FORWARD_ONLY = 2,
    ALLOC_AND_FORWARD = ALLOC_ONLY | FORWARD_ONLY
};

typedef Ptr<std::vector<Blob*> > PtrToVecPtrBlob;

PtrToVecPtrBlob
runLayer(Ptr<Layer> layer, std::vector<Blob> &inpBlobs, std::vector<Blob> &outBlobs, int mode = ALLOC_AND_FORWARD)
{
    PtrToVecPtrBlob inpPtrs(new std::vector<Blob*>());
    inpPtrs->reserve(inpBlobs.size());
    for (size_t i = 0; i < inpBlobs.size(); i++)
        inpPtrs->push_back(&inpBlobs[i]);

    if (mode & ALLOC_ONLY) layer->allocate(*inpPtrs, outBlobs);
    if (mode & FORWARD_ONLY) layer->forward(*inpPtrs, outBlobs);

    return inpPtrs;
}


86
void testLayerUsingCaffeModels(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true)
87 88 89 90 91 92 93
{
    String prototxt = _tf(basename + ".prototxt");
    String caffemodel = _tf(basename + ".caffemodel");

    String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
    String outfile = _tf(basename + ".npy");

94 95
    cv::setNumThreads(cv::getNumberOfCPUs());

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    Net net;
    {
        Ptr<Importer> importer = createCaffeImporter(prototxt, (useCaffeModel) ? caffemodel : String());
        ASSERT_TRUE(importer != NULL);
        importer->populateNet(net);
    }

    Blob inp = blobFromNPY(inpfile);
    Blob ref = blobFromNPY(outfile);

    net.setBlob(".input", inp);
    net.forward();
    Blob out = net.getBlob("output");

    normAssert(ref, out);
}

TEST(Layer_Test_Softmax, Accuracy)
{
115
     OCL_OFF(testLayerUsingCaffeModels("layer_softmax"));
116 117 118 119 120
}
OCL_TEST(Layer_Test_Softmax, Accuracy)
{
     OCL_ON(testLayerUsingCaffeModels("layer_softmax"));
     OCL_OFF();
121 122 123 124
}

TEST(Layer_Test_LRN_spatial, Accuracy)
{
125 126 127 128 129 130
     OCL_OFF(testLayerUsingCaffeModels("layer_lrn_spatial"));
}
OCL_TEST(Layer_Test_LRN_spatial, Accuracy)
{
     OCL_ON(testLayerUsingCaffeModels("layer_lrn_spatial"));
     OCL_OFF();
131 132 133 134
}

TEST(Layer_Test_LRN_channels, Accuracy)
{
135 136 137 138 139 140
     OCL_OFF(testLayerUsingCaffeModels("layer_lrn_channels"));
}
OCL_TEST(Layer_Test_LRN_channels, Accuracy)
{
    OCL_ON(testLayerUsingCaffeModels("layer_lrn_channels"));
    OCL_OFF();
141 142 143 144
}

TEST(Layer_Test_Convolution, Accuracy)
{
145
     OCL_OFF(testLayerUsingCaffeModels("layer_convolution", true));
146 147 148 149 150
}
OCL_TEST(Layer_Test_Convolution, Accuracy)
{
     OCL_ON(testLayerUsingCaffeModels("layer_convolution", true));
     OCL_OFF();
151 152
}

153
TEST(Layer_Test_DeConvolution, Accuracy)
154
{
155
     OCL_OFF(testLayerUsingCaffeModels("layer_deconvolution", true, false));
156
}
arrybn's avatar
arrybn committed
157

158 159 160 161
OCL_TEST(Layer_Test_DeConvolution, Accuracy)
{
     OCL_ON(testLayerUsingCaffeModels("layer_deconvolution", true, false););
     OCL_OFF();
162 163 164 165
}

TEST(Layer_Test_InnerProduct, Accuracy)
{
166 167 168 169 170 171
     OCL_OFF(testLayerUsingCaffeModels("layer_inner_product", true));
}
OCL_TEST(Layer_Test_InnerProduct, Accuracy)
{
    OCL_ON(testLayerUsingCaffeModels("layer_inner_product", true));
    OCL_OFF();
172 173 174 175
}

TEST(Layer_Test_Pooling_max, Accuracy)
{
176 177 178 179 180 181 182
     OCL_OFF(testLayerUsingCaffeModels("layer_pooling_max"));
     OCL_ON();
}
OCL_TEST(Layer_Test_Pooling_max, Accuracy)
{
     OCL_ON(testLayerUsingCaffeModels("layer_pooling_max"));
     OCL_OFF();
183 184 185 186
}

TEST(Layer_Test_Pooling_ave, Accuracy)
{
187 188 189 190 191 192 193
     OCL_OFF(testLayerUsingCaffeModels("layer_pooling_ave"));
     OCL_ON();
}
OCL_TEST(Layer_Test_Pooling_ave, Accuracy)
{
     OCL_ON(testLayerUsingCaffeModels("layer_pooling_ave"));
     OCL_OFF();
194 195 196 197
}

TEST(Layer_Test_MVN, Accuracy)
{
198
     OCL_OFF(testLayerUsingCaffeModels("layer_mvn"));
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
}

TEST(Layer_Test_Reshape, squeeze)
{
    LayerParams params;
    params.set("axis", 2);
    params.set("num_axes", 1);

    Blob inp(BlobShape(4, 3, 1, 2));
    std::vector<Blob*> inpVec(1, &inp);
    std::vector<Blob> outVec;

    Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
    rl->allocate(inpVec, outVec);
    rl->forward(inpVec, outVec);

215
    EXPECT_EQ(outVec[0].shape(), BlobShape(4, 3, 2));
216 217
}

218 219 220 221 222
TEST(Layer_Test_BatchNorm, Accuracy)
{
     OCL_OFF(testLayerUsingCaffeModels("layer_batch_norm", true));
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
//template<typename XMat>
//static void test_Layer_Concat()
//{
//    Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f);
//    std::vector<Blob> res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) };
//    Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f)));
//
//    runLayer(ConcatLayer::create(1), src, res);
//    normAssert(ref, res[0]);
//}
//TEST(Layer_Concat, Accuracy)
//{
//    OCL_OFF(test_Layer_Concat<Mat>());
//}
//OCL_TEST(Layer_Concat, Accuracy)
//{
//    OCL_ON(test_Layer_Concat<Mat>());
//    OCL_OFF();
//}
242 243 244

template<typename XMat>
void test_Reshape_Split_Slice_layers()
245 246 247 248 249 250 251 252
{
    Net net;
    {
        Ptr<Importer> importer = createCaffeImporter(_tf("reshape_and_slice_routines.prototxt"));
        ASSERT_TRUE(importer != NULL);
        importer->populateNet(net);
    }

253
    Blob input(BlobShape(6, 12));
254
    RNG rng(0);
255
    rng.fill(input.getRef<XMat>(), RNG::UNIFORM, -1, 1);
256 257 258 259 260 261 262

    net.setBlob(".input", input);
    net.forward();
    Blob output = net.getBlob("output");

    normAssert(input, output);
}
263
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
264
{
265 266 267
    OCL_OFF(test_Reshape_Split_Slice_layers<Mat>());
}
OCL_TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
268
{
269 270
    OCL_ON(test_Reshape_Split_Slice_layers<UMat>());
    OCL_OFF();
271 272
}

273 274 275
class Layer_LSTM_Test : public ::testing::Test
{
public:
276
    int numInp, numOut;
277
    Blob Wh, Wx, b;
278 279
    Ptr<LSTMLayer> layer;
    std::vector<Blob> inputs, outputs;
280

281 282 283
    Layer_LSTM_Test() {}

    void init(const BlobShape &inpShape_, const BlobShape &outShape_)
284
    {
285 286
        numInp = inpShape_.total();
        numOut = outShape_.total();
287

288 289 290
        Wh = Blob(BlobShape(4 * numOut, numOut));
        Wx = Blob(BlobShape(4 * numOut, numInp));
        b  = Blob(BlobShape(4 * numOut, 1));
291

292 293
        layer = LSTMLayer::create();
        layer->setWeights(Wh, Wx, b);
294
        layer->setOutShape(outShape_);
295 296 297
    }
};

298
TEST_F(Layer_LSTM_Test, get_set_test)
299
{
300 301 302
    BlobShape TN(4);
    BlobShape inpShape(5, 3, 2), inpResShape = TN + inpShape;
    BlobShape outShape(3, 1, 2), outResShape = TN + outShape;
303

304 305 306 307
    init(inpShape, outShape);
    layer->setProduceCellOutput(true);
    layer->setUseTimstampsDim(false);
    layer->setOutShape(outShape);
308

309 310 311 312 313 314
    layer->setC(Blob(outResShape));
    layer->setH(Blob(outResShape));

    inputs.push_back(Blob(inpResShape));
    runLayer(layer, inputs, outputs);

315
    EXPECT_EQ(2u, outputs.size());
316 317 318 319 320 321 322 323 324
    EXPECT_EQ(outResShape, outputs[0].shape());
    EXPECT_EQ(outResShape, outputs[1].shape());

    EXPECT_EQ(outResShape, layer->getC().shape());
    EXPECT_EQ(outResShape, layer->getH().shape());

    EXPECT_EQ(0, layer->inputNameToIndex("x"));
    EXPECT_EQ(0, layer->outputNameToIndex("h"));
    EXPECT_EQ(1, layer->outputNameToIndex("c"));
325 326
}

327
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent)
328 329 330 331 332 333 334 335
{
    Ptr<LSTMLayer> layer = LSTMLayer::create();

    Blob Wx = blobFromNPY(_tf("lstm.prototxt.w_0.npy"));
    Blob Wh = blobFromNPY(_tf("lstm.prototxt.w_2.npy"));
    Blob b  = blobFromNPY(_tf("lstm.prototxt.w_1.npy"));
    layer->setWeights(Wh, Wx, b);

336
    Blob inp = blobFromNPY(_tf("recurrent.input.npy"));
337
    std::vector<Blob> inputs(1, inp), outputs;
338
    runLayer(layer, inputs, outputs);
339 340

    Blob h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy"));
341 342 343 344 345 346 347 348 349 350 351 352 353
    normAssert(h_t_reference, outputs[0]);
}

TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent)
{
    Ptr<RNNLayer> layer = RNNLayer::create();

    layer->setWeights(
                blobFromNPY(_tf("rnn.prototxt.w_0.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_1.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_2.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_3.npy")),
                blobFromNPY(_tf("rnn.prototxt.w_4.npy")) );
354

355 356 357 358 359
    std::vector<Blob> output, input(1, blobFromNPY(_tf("recurrent.input.npy")));
    runLayer(layer, input, output);

    Blob h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy"));
    normAssert(h_ref, output[0]);
360 361
}

362 363 364 365

class Layer_RNN_Test : public ::testing::Test
{
public:
366
    int nX, nH, nO, nT, nS;
367 368 369 370 371
    Blob Whh, Wxh, bh, Who, bo;
    Ptr<RNNLayer> layer;

    std::vector<Blob> inputs, outputs;

372
    Layer_RNN_Test()
373
    {
374 375 376 377 378 379 380 381 382 383 384
        nT = 3;
        nS = 5;
        nX = 31;
        nH = 64;
        nO = 100;

        Whh = Blob(BlobShape(nH, nH));
        Wxh = Blob(BlobShape(nH, nX));
        bh  = Blob(BlobShape(nH, 1));
        Who = Blob(BlobShape(nO, nH));
        bo  = Blob(BlobShape(nO, 1));
385 386

        layer = RNNLayer::create();
387 388
        layer->setProduceHiddenOutput(true);
        layer->setWeights(Wxh, bh, Whh, Who, bo);
389 390 391
    }
};

392
TEST_F(Layer_RNN_Test, get_set_test)
393
{
394 395
    inputs.push_back(Blob(BlobShape(nT, nS, 1, nX)));
    runLayer(layer, inputs, outputs);
396

397
    EXPECT_EQ(outputs.size(), 2u);
398 399
    EXPECT_EQ(outputs[0].shape(), BlobShape(nT, nS, nO));
    EXPECT_EQ(outputs[1].shape(), BlobShape(nT, nS, nH));
400 401
}

402
}