test_sparse_match_interpolator.cpp 6.46 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  By downloading, copying, installing or using the software you agree to this license.
 *  If you do not agree to this license, do not download, install,
 *  copy or use the software.
 *
 *
 *  License Agreement
 *  For Open Source Computer Vision Library
 *  (3 - clause BSD License)
 *
 *  Redistribution and use in source and binary forms, with or without modification,
 *  are permitted provided that the following conditions are met :
 *
14
 *  * Redistributions of source code must retain the above copyright notice,
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
 *  this list of conditions and the following disclaimer.
 *
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *  this list of conditions and the following disclaimer in the documentation
 *  and / or other materials provided with the distribution.
 *
 *  * Neither the names of the copyright holders nor the names of the contributors
 *  may be used to endorse or promote products derived from this software
 *  without specific prior written permission.
 *
 *  This software is provided by the copyright holders and contributors "as is" and
 *  any express or implied warranties, including, but not limited to, the implied
 *  warranties of merchantability and fitness for a particular purpose are disclaimed.
 *  In no event shall copyright holders or contributors be liable for any direct,
 *  indirect, incidental, special, exemplary, or consequential damages
 *  (including, but not limited to, procurement of substitute goods or services;
 *  loss of use, data, or profits; or business interruption) however caused
 *  and on any theory of liability, whether in contract, strict liability,
 *  or tort(including negligence or otherwise) arising in any way out of
 *  the use of this software, even if advised of the possibility of such damage.
 */

#include "test_precomp.hpp"
#include "opencv2/ximgproc/sparse_match_interpolator.hpp"
#include <fstream>

namespace cvtest
{

using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;

static string getDataDir()
{
    return cvtest::TS::ptr()->get_data_path();
}

const float FLOW_TAG_FLOAT = 202021.25f;
Mat readOpticalFlow( const String& path )
{
//    CV_Assert(sizeof(float) == 4);
    //FIXME: ensure right sizes of int and float - here and in writeOpticalFlow()

    Mat_<Point2f> flow;
    ifstream file(path.c_str(), std::ios_base::binary);
    if ( !file.good() )
        return flow; // no file - return empty matrix

    float tag;
    file.read((char*) &tag, sizeof(float));
    if ( tag != FLOW_TAG_FLOAT )
        return flow;

    int width, height;

    file.read((char*) &width, 4);
    file.read((char*) &height, 4);

    flow.create(height, width);

    for ( int i = 0; i < flow.rows; ++i )
    {
        for ( int j = 0; j < flow.cols; ++j )
        {
            Point2f u;
            file.read((char*) &u.x, sizeof(float));
            file.read((char*) &u.y, sizeof(float));
            if ( !file.good() )
            {
                flow.release();
                return flow;
            }

            flow(i, j) = u;
        }
    }
    file.close();
    return flow;
}

CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3)
typedef tuple<Size, GuideTypes> InterpolatorParams;
typedef TestWithParam<InterpolatorParams> InterpolatorTest;

TEST(InterpolatorTest, ReferenceAccuracy)
{
    double MAX_DIF = 1.0;
    double MAX_MEAN_DIF = 1.0 / 256.0;
    string dir = getDataDir() + "cv/sparse_match_interpolator";

    Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png",IMREAD_COLOR);
    ASSERT_FALSE(src.empty());

    Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
    ASSERT_FALSE(ref_flow.empty());

    ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
    float from_x,from_y,to_x,to_y;
    vector<Point2f> from_points;
    vector<Point2f> to_points;

    while(file >> from_x >> from_y >> to_x >> to_y)
    {
        from_points.push_back(Point2f(from_x,from_y));
        to_points.push_back(Point2f(to_x,to_y));
    }

    cv::setNumThreads(cv::getNumberOfCPUs());
    Mat res_flow;

    Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
    interpolator->setK(128);
    interpolator->setSigma(0.05f);
    interpolator->setUsePostProcessing(true);
    interpolator->setFGSLambda(500.0f);
    interpolator->setFGSSigma(1.5f);
    interpolator->interpolate(src,from_points,Mat(),to_points,res_flow);

    EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
    EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total());
}

TEST_P(InterpolatorTest, MultiThreadReproducibility)
{
    if (cv::getNumberOfCPUs() == 1)
        return;

    double MAX_DIF = 1.0;
    double MAX_MEAN_DIF = 1.0 / 256.0;
    int loopsCount = 2;
    RNG rng(0);

    InterpolatorParams params = GetParam();
    Size size       = get<0>(params);
    int guideType   = get<1>(params);

    Mat from(size, guideType);
    randu(from, 0, 255);

    int num_matches = rng.uniform(5,SHRT_MAX-1);
    vector<Point2f> from_points;
    vector<Point2f> to_points;

    for(int i=0;i<num_matches;i++)
    {
        from_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
        to_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
    }

    for (int iter = 0; iter <= loopsCount; iter++)
    {
        int K = rng.uniform(4,512);
        float sigma = rng.uniform(0.01f,0.5f);
        float FGSlambda = rng.uniform(100.0f, 10000.0f);
        float FGSsigma  = rng.uniform(0.5f, 100.0f);

        Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
        interpolator->setK(K);
        interpolator->setSigma(sigma);
        interpolator->setUsePostProcessing(true);
        interpolator->setFGSLambda(FGSlambda);
        interpolator->setFGSSigma(FGSsigma);

        cv::setNumThreads(cv::getNumberOfCPUs());
        Mat resMultiThread;
        interpolator->interpolate(from,from_points,Mat(),to_points,resMultiThread);

        cv::setNumThreads(1);
        Mat resSingleThread;
        interpolator->interpolate(from,from_points,Mat(),to_points,resSingleThread);

        EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
        EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1) , MAX_MEAN_DIF*resMultiThread.total());
    }
}
INSTANTIATE_TEST_CASE_P(FullSet,InterpolatorTest, Combine(Values(szODD,szVGA), GuideTypes::all()));
}