staticSaliencyFineGrained.cpp 9.58 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 /*M///////////////////////////////////////////////////////////////////////////////////////
 //
 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 //
 //  By downloading, copying, installing or using the software you agree to this license.
 //  If you do not agree to this license, do not download, install,
 //  copy or use the software.
 //
 //
 //                           License Agreement
 //                For Open Source Computer Vision Library
 //
 // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
 // Third party copyrights are property of their respective owners.
 //
 // Redistribution and use in source and binary forms, with or without modification,
 // are permitted provided that the following conditions are met:
 //
 //   * Redistribution's of source code must retain the above copyright notice,
 //     this list of conditions and the following disclaimer.
 //
 //   * Redistribution's in binary form must reproduce the above copyright notice,
 //     this list of conditions and the following disclaimer in the documentation
 //     and/or other materials provided with the distribution.
 //
 //   * The name of the copyright holders may not be used to endorse or promote products
 //     derived from this software without specific prior written permission.
 //
 // This software is provided by the copyright holders and contributors "as is" and
 // any express or implied warranties, including, but not limited to, the implied
 // warranties of merchantability and fitness for a particular purpose are disclaimed.
 // In no event shall the Intel Corporation or contributors be liable for any direct,
 // indirect, incidental, special, exemplary, or consequential damages
 // (including, but not limited to, procurement of substitute goods or services;
 // loss of use, data, or profits; or business interruption) however caused
 // and on any theory of liability, whether in contract, strict liability,
 // or tort (including negligence or otherwise) arising in any way out of
 // the use of this software, even if advised of the possibility of such damage.
 //
 //M*/

#include "precomp.hpp"

namespace cv
{
namespace saliency
{

/**
 * Fine Grained Saliency
 */


StaticSaliencyFineGrained::StaticSaliencyFineGrained()
{
    className = "FINE_GRAINED";
}

StaticSaliencyFineGrained::~StaticSaliencyFineGrained()
{

}


65
bool StaticSaliencyFineGrained::computeSaliencyImpl(InputArray image, OutputArray saliencyMap )
66 67 68
{
    Mat dst(Size(image.getMat().cols, image.getMat().rows), CV_8UC1);
    calcIntensityChannel(image.getMat(), dst);
69
    dst.convertTo(saliencyMap, CV_32F, 1.0f/255.0f); // values are in range [0; 1]
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    #ifdef SALIENCY_DEBUG
    // visualize saliency map
    imshow( "Saliency Map Interna", saliencyMap );
    #endif

    return true;
}

void StaticSaliencyFineGrained::copyImage(Mat srcArg, Mat dstArg)
{
    srcArg.copyTo(dstArg);
}

void StaticSaliencyFineGrained::calcIntensityChannel(Mat srcArg, Mat dstArg)
{
    if(dstArg.channels() > 1)
    {
        //("Error: Destiny image must have only one channel.\n");
        return;
    }
    const int numScales = 6;
    Mat intensityScaledOn[numScales];
    Mat intensityScaledOff[numScales];
    Mat gray = Mat::zeros(Size(srcArg.cols, srcArg.rows), CV_8UC1);
    Mat integralImage(Size(srcArg.cols + 1, srcArg.rows + 1), CV_32FC1);
    Mat intensity(Size(srcArg.cols, srcArg.rows), CV_8UC1);
    Mat intensityOn(Size(srcArg.cols, srcArg.rows), CV_8UC1);
    Mat intensityOff(Size(srcArg.cols, srcArg.rows), CV_8UC1);

    int i;
    int neighborhood;
    int neighborhoods[] = {3*4, 3*4*2, 3*4*2*2, 7*4, 7*4*2, 7*4*2*2};

    for(i=0; i<numScales; i++)
    {
        intensityScaledOn[i] = Mat(Size(srcArg.cols, srcArg.rows), CV_8UC1);
        intensityScaledOff[i] = Mat(Size(srcArg.cols, srcArg.rows), CV_8UC1);
    }

    // Prepare the input image: put it into a grayscale image.
    if(srcArg.channels()==3)
    {
        cvtColor(srcArg, gray, COLOR_BGR2GRAY);
    }
    else
    {
        srcArg.copyTo(gray);
    }

    // smooth pixels at least twice, as done by Frintrop and Itti
    GaussianBlur( gray, gray, Size( 3, 3 ), 0, 0 );
    GaussianBlur( gray, gray, Size( 3, 3 ), 0, 0 );


    // Calculate integral image, only once.
    integral(gray, integralImage, CV_32F);


    for(i=0; i< numScales; i++)
    {
        neighborhood = neighborhoods[i] ;
        getIntensityScaled(integralImage, gray, intensityScaledOn[i], intensityScaledOff[i], neighborhood);
    }

    mixScales(intensityScaledOn, intensityOn, intensityScaledOff, intensityOff, numScales);

    mixOnOff(intensityOn, intensityOff, intensity);

    intensity.copyTo(dstArg);
}

void StaticSaliencyFineGrained::getIntensityScaled(Mat integralImage, Mat gray, Mat intensityScaledOn, Mat intensityScaledOff, int neighborhood)
{
    float value, meanOn, meanOff;
    Point2i point;
    int x,y;
    intensityScaledOn.setTo(Scalar::all(0));
    intensityScaledOff.setTo(Scalar::all(0));


    for(y = 0; y < gray.rows; y++)
    {
        for(x = 0; x < gray.cols; x++)
        {
            point.x = x;
            point.y = y;
            value = getMean(integralImage, point, neighborhood, gray.at<uchar>(y, x));

            meanOn = gray.at<uchar>(y, x) - value;
            meanOff = value - gray.at<uchar>(y, x);

            if(meanOn > 0)
                intensityScaledOn.at<uchar>(y, x) = (uchar)meanOn;
            else
                intensityScaledOn.at<uchar>(y, x) = 0;

            if(meanOff > 0)
                intensityScaledOff.at<uchar>(y, x) = (uchar)meanOff;
            else
                intensityScaledOff.at<uchar>(y, x) = 0;
        }
    }
}

float StaticSaliencyFineGrained::getMean(Mat srcArg, Point2i PixArg, int neighbourhood, int centerVal)
{
    Point2i P1, P2;
    float value;

    P1.x = PixArg.x - neighbourhood + 1;
    P1.y = PixArg.y - neighbourhood + 1;
    P2.x = PixArg.x + neighbourhood + 1;
    P2.y = PixArg.y + neighbourhood + 1;

    if(P1.x < 0)
        P1.x = 0;
    else if(P1.x > srcArg.cols - 1)
        P1.x = srcArg.cols - 1;
    if(P2.x < 0)
        P2.x = 0;
    else if(P2.x > srcArg.cols - 1)
        P2.x = srcArg.cols - 1;
    if(P1.y < 0)
        P1.y = 0;
    else if(P1.y > srcArg.rows - 1)
        P1.y = srcArg.rows - 1;
    if(P2.y < 0)
        P2.y = 0;
    else if(P2.y > srcArg.rows - 1)
        P2.y = srcArg.rows - 1;

    // we use the integral image to compute fast features
    value = (float) (
            (srcArg.at<float>(P2.y, P2.x)) +
            (srcArg.at<float>(P1.y, P1.x)) -
            (srcArg.at<float>(P2.y, P1.x)) -
            (srcArg.at<float>(P1.y, P2.x))
    );
    value = (value - centerVal)/  (( (P2.x - P1.x) * (P2.y - P1.y))-1)  ;
    return value;
}

void StaticSaliencyFineGrained::mixScales(Mat *intensityScaledOn, Mat intensityOn, Mat *intensityScaledOff, Mat intensityOff, const int numScales)
{
    int i=0, x, y;
    int width = intensityScaledOn[0].cols;
    int height = intensityScaledOn[0].rows;
    short int maxValOn = 0, currValOn=0;
    short int maxValOff = 0, currValOff=0;
    int maxValSumOff = 0, maxValSumOn=0;
    Mat mixedValuesOn(Size(width, height), CV_16UC1);
    Mat mixedValuesOff(Size(width, height), CV_16UC1);

    mixedValuesOn.setTo(Scalar::all(0));
    mixedValuesOff.setTo(Scalar::all(0));

    for(i=0;i<numScales;i++)
    {
        for(y=0;y<height;y++)
            for(x=0;x<width;x++)
            {
                      currValOn = intensityScaledOn[i].at<uchar>(y, x);
                      if(currValOn > maxValOn)
                          maxValOn = currValOn;

                      currValOff = intensityScaledOff[i].at<uchar>(y, x);
                      if(currValOff > maxValOff)
                          maxValOff = currValOff;

                      mixedValuesOn.at<unsigned short>(y, x) += currValOn;
                      mixedValuesOff.at<unsigned short>(y, x) += currValOff;
            }
    }

    for(y=0;y<height;y++)
        for(x=0;x<width;x++)
        {
            currValOn = mixedValuesOn.at<unsigned short>(y, x);
            currValOff = mixedValuesOff.at<unsigned short>(y, x);
                  if(currValOff > maxValSumOff)
                      maxValSumOff = currValOff;
                  if(currValOn > maxValSumOn)
                      maxValSumOn = currValOn;
        }


    for(y=0;y<height;y++)
        for(x=0;x<width;x++)
        {
            intensityOn.at<uchar>(y, x) = (uchar)(255.*((float)(mixedValuesOn.at<unsigned short>(y, x) / (float)maxValSumOn)));
            intensityOff.at<uchar>(y, x) = (uchar)(255.*((float)(mixedValuesOff.at<unsigned short>(y, x) / (float)maxValSumOff)));
        }

}

void StaticSaliencyFineGrained::mixOnOff(Mat intensityOn, Mat intensityOff, Mat intensityArg)
{
    int x,y;
    int width = intensityOn.cols;
    int height= intensityOn.rows;
    int maxVal=0;

    int currValOn, currValOff, maxValSumOff, maxValSumOn;

    Mat intensity(Size(width, height), CV_8UC1);


    maxValSumOff = 0;
    maxValSumOn = 0;

    for(y=0;y<height;y++)
    for(x=0;x<width;x++)
    {
        currValOn = intensityOn.at<uchar>(y, x);
        currValOff = intensityOff.at<uchar>(y, x);
              if(currValOff > maxValSumOff)
                  maxValSumOff = currValOff;
              if(currValOn > maxValSumOn)
                  maxValSumOn = currValOn;
    }

    if(maxValSumOn > maxValSumOff)
        maxVal = maxValSumOn;
    else
        maxVal = maxValSumOff;



    for(y=0;y<height;y++)
        for(x=0;x<width;x++)
        {
            intensity.at<uchar>(y, x) = (uchar) (255. * (float) (intensityOn.at<uchar>(y, x) + intensityOff.at<uchar>(y, x)) / (float)maxVal);
        }

    intensity.copyTo(intensityArg);
}


} /* namespace saliency */
}/* namespace cv */