detect_markers.cpp 8.01 KB
Newer Older
S. Garrido's avatar
S. Garrido committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.

                          License Agreement
               For Open Source Computer Vision Library
                       (3-clause BSD License)

Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

  * Neither the names of the copyright holders nor the names of the contributors
    may be used to endorse or promote products derived from this software
    without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/


#include <opencv2/highgui.hpp>
#include <opencv2/aruco.hpp>
#include <iostream>

using namespace std;
using namespace cv;

47 48 49 50 51 52 53 54 55 56 57 58 59
namespace {
const char* about = "Basic marker detection";
const char* keys  =
        "{d        |       | dictionary: DICT_4X4_50=0, DICT_4X4_100=1, DICT_4X4_250=2,"
        "DICT_4X4_1000=3, DICT_5X5_50=4, DICT_5X5_100=5, DICT_5X5_250=6, DICT_5X5_1000=7, "
        "DICT_6X6_50=8, DICT_6X6_100=9, DICT_6X6_250=10, DICT_6X6_1000=11, DICT_7X7_50=12,"
        "DICT_7X7_100=13, DICT_7X7_250=14, DICT_7X7_1000=15, DICT_ARUCO_ORIGINAL = 16}"
        "{v        |       | Input from video file, if ommited, input comes from camera }"
        "{ci       | 0     | Camera id if input doesnt come from video (-v) }"
        "{c        |       | Camera intrinsic parameters. Needed for camera pose }"
        "{l        | 0.1   | Marker side lenght (in meters). Needed for correct scale in camera pose }"
        "{dp       |       | File of marker detector parameters }"
        "{r        |       | show rejected candidates too }";
S. Garrido's avatar
S. Garrido committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
}

/**
 */
static bool readCameraParameters(string filename, Mat &camMatrix, Mat &distCoeffs) {
    FileStorage fs(filename, FileStorage::READ);
    if(!fs.isOpened())
        return false;
    fs["camera_matrix"] >> camMatrix;
    fs["distortion_coefficients"] >> distCoeffs;
    return true;
}



/**
 */
77
static bool readDetectorParameters(string filename, Ptr<aruco::DetectorParameters> &params) {
S. Garrido's avatar
S. Garrido committed
78 79 80
    FileStorage fs(filename, FileStorage::READ);
    if(!fs.isOpened())
        return false;
81 82 83 84 85 86 87 88 89 90
    fs["adaptiveThreshWinSizeMin"] >> params->adaptiveThreshWinSizeMin;
    fs["adaptiveThreshWinSizeMax"] >> params->adaptiveThreshWinSizeMax;
    fs["adaptiveThreshWinSizeStep"] >> params->adaptiveThreshWinSizeStep;
    fs["adaptiveThreshConstant"] >> params->adaptiveThreshConstant;
    fs["minMarkerPerimeterRate"] >> params->minMarkerPerimeterRate;
    fs["maxMarkerPerimeterRate"] >> params->maxMarkerPerimeterRate;
    fs["polygonalApproxAccuracyRate"] >> params->polygonalApproxAccuracyRate;
    fs["minCornerDistanceRate"] >> params->minCornerDistanceRate;
    fs["minDistanceToBorder"] >> params->minDistanceToBorder;
    fs["minMarkerDistanceRate"] >> params->minMarkerDistanceRate;
91
    fs["cornerRefinementMethod"] >> params->cornerRefinementMethod;
92 93 94 95 96 97 98 99 100
    fs["cornerRefinementWinSize"] >> params->cornerRefinementWinSize;
    fs["cornerRefinementMaxIterations"] >> params->cornerRefinementMaxIterations;
    fs["cornerRefinementMinAccuracy"] >> params->cornerRefinementMinAccuracy;
    fs["markerBorderBits"] >> params->markerBorderBits;
    fs["perspectiveRemovePixelPerCell"] >> params->perspectiveRemovePixelPerCell;
    fs["perspectiveRemoveIgnoredMarginPerCell"] >> params->perspectiveRemoveIgnoredMarginPerCell;
    fs["maxErroneousBitsInBorderRate"] >> params->maxErroneousBitsInBorderRate;
    fs["minOtsuStdDev"] >> params->minOtsuStdDev;
    fs["errorCorrectionRate"] >> params->errorCorrectionRate;
S. Garrido's avatar
S. Garrido committed
101 102 103 104 105 106 107 108
    return true;
}



/**
 */
int main(int argc, char *argv[]) {
109 110
    CommandLineParser parser(argc, argv, keys);
    parser.about(about);
S. Garrido's avatar
S. Garrido committed
111

112 113
    if(argc < 2) {
        parser.printMessage();
S. Garrido's avatar
S. Garrido committed
114 115 116
        return 0;
    }

117 118 119 120
    int dictionaryId = parser.get<int>("d");
    bool showRejected = parser.has("r");
    bool estimatePose = parser.has("c");
    float markerLength = parser.get<float>("l");
S. Garrido's avatar
S. Garrido committed
121

122
    Ptr<aruco::DetectorParameters> detectorParams = aruco::DetectorParameters::create();
123 124
    if(parser.has("dp")) {
        bool readOk = readDetectorParameters(parser.get<string>("dp"), detectorParams);
S. Garrido's avatar
S. Garrido committed
125
        if(!readOk) {
126
            cerr << "Invalid detector parameters file" << endl;
S. Garrido's avatar
S. Garrido committed
127 128 129
            return 0;
        }
    }
130
    detectorParams->cornerRefinementMethod = aruco::CORNER_REFINE_SUBPIX; // do corner refinement in markers
131 132 133 134 135 136 137

    int camId = parser.get<int>("ci");

    String video;
    if(parser.has("v")) {
        video = parser.get<String>("v");
    }
S. Garrido's avatar
S. Garrido committed
138

139 140 141 142 143
    if(!parser.check()) {
        parser.printErrors();
        return 0;
    }

144
    Ptr<aruco::Dictionary> dictionary =
145 146 147 148 149
        aruco::getPredefinedDictionary(aruco::PREDEFINED_DICTIONARY_NAME(dictionaryId));

    Mat camMatrix, distCoeffs;
    if(estimatePose) {
        bool readOk = readCameraParameters(parser.get<string>("c"), camMatrix, distCoeffs);
S. Garrido's avatar
S. Garrido committed
150
        if(!readOk) {
151
            cerr << "Invalid camera file" << endl;
S. Garrido's avatar
S. Garrido committed
152 153 154 155 156 157
            return 0;
        }
    }

    VideoCapture inputVideo;
    int waitTime;
158 159
    if(!video.empty()) {
        inputVideo.open(video);
S. Garrido's avatar
S. Garrido committed
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        waitTime = 0;
    } else {
        inputVideo.open(camId);
        waitTime = 10;
    }

    double totalTime = 0;
    int totalIterations = 0;

    while(inputVideo.grab()) {
        Mat image, imageCopy;
        inputVideo.retrieve(image);

        double tick = (double)getTickCount();

        vector< int > ids;
        vector< vector< Point2f > > corners, rejected;
177
        vector< Vec3d > rvecs, tvecs;
S. Garrido's avatar
S. Garrido committed
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

        // detect markers and estimate pose
        aruco::detectMarkers(image, dictionary, corners, ids, detectorParams, rejected);
        if(estimatePose && ids.size() > 0)
            aruco::estimatePoseSingleMarkers(corners, markerLength, camMatrix, distCoeffs, rvecs,
                                             tvecs);

        double currentTime = ((double)getTickCount() - tick) / getTickFrequency();
        totalTime += currentTime;
        totalIterations++;
        if(totalIterations % 30 == 0) {
            cout << "Detection Time = " << currentTime * 1000 << " ms "
                 << "(Mean = " << 1000 * totalTime / double(totalIterations) << " ms)" << endl;
        }

        // draw results
        image.copyTo(imageCopy);
        if(ids.size() > 0) {
            aruco::drawDetectedMarkers(imageCopy, corners, ids);

            if(estimatePose) {
                for(unsigned int i = 0; i < ids.size(); i++)
                    aruco::drawAxis(imageCopy, camMatrix, distCoeffs, rvecs[i], tvecs[i],
                                    markerLength * 0.5f);
            }
        }

        if(showRejected && rejected.size() > 0)
            aruco::drawDetectedMarkers(imageCopy, rejected, noArray(), Scalar(100, 0, 255));

        imshow("out", imageCopy);
        char key = (char)waitKey(waitTime);
        if(key == 27) break;
    }

    return 0;
}