test_rotation_and_scale_invariance.cpp 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include "opencv2/highgui.hpp"

using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;

const string IMAGE_TSUKUBA = "/features2d/tsukuba.png";
const string IMAGE_BIKES = "/detectors_descriptors_evaluation/images_datasets/bikes/img1.png";

#define SHOW_DEBUG_LOG 0

static
Mat generateHomography(float angle)
{
    // angle - rotation around Oz in degrees
    float angleRadian = static_cast<float>(angle * CV_PI / 180);
    Mat H = Mat::eye(3, 3, CV_32FC1);
    H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
    H.at<float>(0,1) = -std::sin(angleRadian);
    H.at<float>(1,0) =  std::sin(angleRadian);

    return H;
}

static
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
{
    // angle - rotation around Oz in degrees
    float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows));
    Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
    LUShift.at<float>(0,2) = static_cast<float>(-srcImage.cols/2);
    LUShift.at<float>(1,2) = static_cast<float>(-srcImage.rows/2);
    Mat RDShift = Mat::eye(3, 3, CV_32FC1); // right down
    RDShift.at<float>(0,2) = diag/2;
    RDShift.at<float>(1,2) = diag/2;
    Size sz(cvRound(diag), cvRound(diag));

    Mat srcMask(srcImage.size(), CV_8UC1, Scalar(255));

    Mat H = RDShift * generateHomography(angle) * LUShift;
    warpPerspective(srcImage, dstImage, H, sz);
    warpPerspective(srcMask, dstMask, H, sz);

    return H;
}

void rotateKeyPoints(const vector<KeyPoint>& src, const Mat& H, float angle, vector<KeyPoint>& dst)
{
    // suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage()
    vector<Point2f> srcCenters, dstCenters;
    KeyPoint::convert(src, srcCenters);

    perspectiveTransform(srcCenters, dstCenters, H);

    dst = src;
    for(size_t i = 0; i < dst.size(); i++)
    {
        dst[i].pt = dstCenters[i];
        float dstAngle = src[i].angle + angle;
        if(dstAngle >= 360.f)
            dstAngle -= 360.f;
        dst[i].angle = dstAngle;
    }
}

void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
{
    dst.resize(src.size());
    for(size_t i = 0; i < src.size(); i++)
        dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale, src[i].angle);
}

static
float calcCirclesIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
    float c = static_cast<float>(norm(p0 - p1)), sqr_c = c * c;

    float sqr_r0 = r0 * r0;
    float sqr_r1 = r1 * r1;

    if(r0 + r1 <= c)
       return 0;

    float minR = std::min(r0, r1);
    float maxR = std::max(r0, r1);
    if(c + minR <= maxR)
        return static_cast<float>(CV_PI * minR * minR);

    float cos_halfA0 = (sqr_r0 + sqr_c - sqr_r1) / (2 * r0 * c);
    float cos_halfA1 = (sqr_r1 + sqr_c - sqr_r0) / (2 * r1 * c);

    float A0 = 2 * acos(cos_halfA0);
    float A1 = 2 * acos(cos_halfA1);

    return  0.5f * sqr_r0 * (A0 - sin(A0)) +
            0.5f * sqr_r1 * (A1 - sin(A1));
}

static
float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
    float intersectArea = calcCirclesIntersectArea(p0, r0, p1, r1);
    float unionArea = static_cast<float>(CV_PI) * (r0 * r0 + r1 * r1) - intersectArea;
    return intersectArea / unionArea;
}

static
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
                    const vector<KeyPoint>& keypoints1,
                    vector<DMatch>& matches)
{
    vector<Point2f> points0;
    KeyPoint::convert(keypoints0, points0);
    Mat points0t;
    if(H.empty())
        points0t = Mat(points0);
    else
        perspectiveTransform(Mat(points0), points0t, H);

    matches.clear();
    vector<uchar> usedMask(keypoints1.size(), 0);
    for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++)
    {
        int nearestPointIndex = -1;
        float maxIntersectRatio = 0.f;
        const float r0 =  0.5f * keypoints0[i0].size;
        for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
        {
            if(nearestPointIndex >= 0 && usedMask[i1])
                continue;

            float r1 = 0.5f * keypoints1[i1].size;
            float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
                                                      keypoints1[i1].pt, r1);
            if(intersectRatio > maxIntersectRatio)
            {
                maxIntersectRatio = intersectRatio;
                nearestPointIndex = static_cast<int>(i1);
            }
        }

        matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
        if(nearestPointIndex >= 0)
            usedMask[nearestPointIndex] = 1;
    }
}

static void removeVerySmallKeypoints(vector<KeyPoint>& keypoints)
{
    size_t i, j = 0, n = keypoints.size();
    for( i = 0; i < n; i++ )
    {
        if( (keypoints[i].octave & 128) != 0 )
            ;
        else
            keypoints[j++] = keypoints[i];
    }
    keypoints.resize(j);
}


class DetectorRotationInvarianceTest : public cvtest::BaseTest
{
public:
    DetectorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
                                     float _minKeyPointMatchesRatio,
                                     float _minAngleInliersRatio) :
        featureDetector(_featureDetector),
        minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
        minAngleInliersRatio(_minAngleInliersRatio)
    {
        CV_Assert(featureDetector);
    }

protected:

    void run(int)
    {
        const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;

        // Read test data
        Mat image0 = imread(imageFilename), image1, mask1;
        if(image0.empty())
        {
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
            return;
        }

        vector<KeyPoint> keypoints0;
        featureDetector->detect(image0, keypoints0);
        removeVerySmallKeypoints(keypoints0);
        if(keypoints0.size() < 15)
            CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");

        const int maxAngle = 360, angleStep = 15;
        for(int angle = 0; angle < maxAngle; angle += angleStep)
        {
            Mat H = rotateImage(image0, static_cast<float>(angle), image1, mask1);

            vector<KeyPoint> keypoints1;
            featureDetector->detect(image1, keypoints1, mask1);
            removeVerySmallKeypoints(keypoints1);

            vector<DMatch> matches;
            matchKeyPoints(keypoints0, H, keypoints1, matches);

            int angleInliersCount = 0;

            const float minIntersectRatio = 0.5f;
            int keyPointMatchesCount = 0;
            for(size_t m = 0; m < matches.size(); m++)
            {
                if(matches[m].distance < minIntersectRatio)
                    continue;

                keyPointMatchesCount++;

                // Check does this inlier have consistent angles
                const float maxAngleDiff = 15.f; // grad
                float angle0 = keypoints0[matches[m].queryIdx].angle;
                float angle1 = keypoints1[matches[m].trainIdx].angle;
                if(angle0 == -1 || angle1 == -1)
                    CV_Error(Error::StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
                CV_Assert(angle0 >= 0.f && angle0 < 360.f);
                CV_Assert(angle1 >= 0.f && angle1 < 360.f);

                float rotAngle0 = angle0 + angle;
                if(rotAngle0 >= 360.f)
                    rotAngle0 -= 360.f;

                float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
                angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
                CV_Assert(angleDiff >= 0.f);
                bool isAngleCorrect = angleDiff < maxAngleDiff;
                if(isAngleCorrect)
                    angleInliersCount++;
            }

            float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
            if(keyPointMatchesRatio < minKeyPointMatchesRatio)
            {
                ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
                           keyPointMatchesRatio, minKeyPointMatchesRatio);
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                return;
            }

            if(keyPointMatchesCount)
            {
                float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
                if(angleInliersRatio < minAngleInliersRatio)
                {
                    ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
                               angleInliersRatio, minAngleInliersRatio);
                    ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                    return;
                }
            }
#if SHOW_DEBUG_LOG
            std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
                << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
#endif
        }
        ts->set_failed_test_info( cvtest::TS::OK );
    }

    Ptr<FeatureDetector> featureDetector;
    float minKeyPointMatchesRatio;
    float minAngleInliersRatio;
};

class DescriptorRotationInvarianceTest : public cvtest::BaseTest
{
public:
    DescriptorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
                                     const Ptr<DescriptorExtractor>& _descriptorExtractor,
                                     int _normType,
                                     float _minDescInliersRatio) :
        featureDetector(_featureDetector),
        descriptorExtractor(_descriptorExtractor),
        normType(_normType),
        minDescInliersRatio(_minDescInliersRatio)
    {
        CV_Assert(featureDetector);
        CV_Assert(descriptorExtractor);
    }

protected:

    void run(int)
    {
        const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;

        // Read test data
        Mat image0 = imread(imageFilename), image1, mask1;
        if(image0.empty())
        {
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
            return;
        }

        vector<KeyPoint> keypoints0;
        Mat descriptors0;
        featureDetector->detect(image0, keypoints0);
        removeVerySmallKeypoints(keypoints0);
        if(keypoints0.size() < 15)
            CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");
        descriptorExtractor->compute(image0, keypoints0, descriptors0);

        BFMatcher bfmatcher(normType);

        const float minIntersectRatio = 0.5f;
        const int maxAngle = 360, angleStep = 15;
        for(int angle = 0; angle < maxAngle; angle += angleStep)
        {
            Mat H = rotateImage(image0, static_cast<float>(angle), image1, mask1);

            vector<KeyPoint> keypoints1;
            rotateKeyPoints(keypoints0, H, static_cast<float>(angle), keypoints1);
            Mat descriptors1;
            descriptorExtractor->compute(image1, keypoints1, descriptors1);

            vector<DMatch> descMatches;
            bfmatcher.match(descriptors0, descriptors1, descMatches);

            int descInliersCount = 0;
            for(size_t m = 0; m < descMatches.size(); m++)
            {
                const KeyPoint& transformed_p0 = keypoints1[descMatches[m].queryIdx];
                const KeyPoint& p1 = keypoints1[descMatches[m].trainIdx];
                if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
                                      p1.pt, 0.5f * p1.size) >= minIntersectRatio)
                {
                    descInliersCount++;
                }
            }

            float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
            if(descInliersRatio < minDescInliersRatio)
            {
                ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
                           descInliersRatio, minDescInliersRatio);
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                return;
            }
#if SHOW_DEBUG_LOG
            std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
#endif
        }
        ts->set_failed_test_info( cvtest::TS::OK );
    }

    Ptr<FeatureDetector> featureDetector;
    Ptr<DescriptorExtractor> descriptorExtractor;
    int normType;
    float minDescInliersRatio;
};


class DetectorScaleInvarianceTest : public cvtest::BaseTest
{
public:
    DetectorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
                                float _minKeyPointMatchesRatio,
                                float _minScaleInliersRatio) :
        featureDetector(_featureDetector),
        minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
        minScaleInliersRatio(_minScaleInliersRatio)
    {
        CV_Assert(featureDetector);
    }

protected:

    void run(int)
    {
        const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;

        // Read test data
        Mat image0 = imread(imageFilename);
        if(image0.empty())
        {
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
            return;
        }

        vector<KeyPoint> keypoints0;
        featureDetector->detect(image0, keypoints0);
        removeVerySmallKeypoints(keypoints0);
        if(keypoints0.size() < 15)
            CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");

        for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
        {
            float scale = 1.f + scaleIdx * 0.5f;
            Mat image1;
            resize(image0, image1, Size(), 1./scale, 1./scale);

            vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
            featureDetector->detect(image1, keypoints1);
            removeVerySmallKeypoints(keypoints1);
            if(keypoints1.size() < 15)
                CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");

            if(keypoints1.size() > keypoints0.size())
            {
                ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
                    "It gives more points count in an image of the smaller size.\n"
                    "original size (%d, %d), keypoints count = %d\n"
                    "reduced size (%d, %d), keypoints count = %d\n",
                    image0.cols, image0.rows, keypoints0.size(),
                    image1.cols, image1.rows, keypoints1.size());
                ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
                return;
            }

            scaleKeyPoints(keypoints1, osiKeypoints1, scale);

            vector<DMatch> matches;
            // image1 is query image (it's reduced image0)
            // image0 is train image
            matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);

            const float minIntersectRatio = 0.5f;
            int keyPointMatchesCount = 0;
            int scaleInliersCount = 0;

            for(size_t m = 0; m < matches.size(); m++)
            {
                if(matches[m].distance < minIntersectRatio)
                    continue;

                keyPointMatchesCount++;

                // Check does this inlier have consistent sizes
                const float maxSizeDiff = 0.8f;//0.9f; // grad
                float size0 = keypoints0[matches[m].trainIdx].size;
                float size1 = osiKeypoints1[matches[m].queryIdx].size;
                CV_Assert(size0 > 0 && size1 > 0);
                if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
                    scaleInliersCount++;
            }

            float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
            if(keyPointMatchesRatio < minKeyPointMatchesRatio)
            {
                ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
                           keyPointMatchesRatio, minKeyPointMatchesRatio);
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                return;
            }

            if(keyPointMatchesCount)
            {
                float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
                if(scaleInliersRatio < minScaleInliersRatio)
                {
                    ts->printf(cvtest::TS::LOG, "Incorrect scaleInliersRatio: curr = %f, min = %f.\n",
                               scaleInliersRatio, minScaleInliersRatio);
                    ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                    return;
                }
            }
#if SHOW_DEBUG_LOG
            std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
                << " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
#endif
        }
        ts->set_failed_test_info( cvtest::TS::OK );
    }

    Ptr<FeatureDetector> featureDetector;
    float minKeyPointMatchesRatio;
    float minScaleInliersRatio;
};

class DescriptorScaleInvarianceTest : public cvtest::BaseTest
{
public:
    DescriptorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
                                const Ptr<DescriptorExtractor>& _descriptorExtractor,
                                int _normType,
                                float _minDescInliersRatio) :
        featureDetector(_featureDetector),
        descriptorExtractor(_descriptorExtractor),
        normType(_normType),
        minDescInliersRatio(_minDescInliersRatio)
    {
        CV_Assert(featureDetector);
        CV_Assert(descriptorExtractor);
    }

protected:

    void run(int)
    {
        const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;

        // Read test data
        Mat image0 = imread(imageFilename);
        if(image0.empty())
        {
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
            return;
        }

        vector<KeyPoint> keypoints0;
        featureDetector->detect(image0, keypoints0);
        removeVerySmallKeypoints(keypoints0);
        if(keypoints0.size() < 15)
            CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");
        Mat descriptors0;
        descriptorExtractor->compute(image0, keypoints0, descriptors0);

        BFMatcher bfmatcher(normType);
        for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
        {
            float scale = 1.f + scaleIdx * 0.5f;

            Mat image1;
            resize(image0, image1, Size(), 1./scale, 1./scale);

            vector<KeyPoint> keypoints1;
            scaleKeyPoints(keypoints0, keypoints1, 1.0f/scale);
            Mat descriptors1;
            descriptorExtractor->compute(image1, keypoints1, descriptors1);

            vector<DMatch> descMatches;
            bfmatcher.match(descriptors0, descriptors1, descMatches);

            const float minIntersectRatio = 0.5f;
            int descInliersCount = 0;
            for(size_t m = 0; m < descMatches.size(); m++)
            {
                const KeyPoint& transformed_p0 = keypoints0[descMatches[m].queryIdx];
                const KeyPoint& p1 = keypoints0[descMatches[m].trainIdx];
                if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
                                      p1.pt, 0.5f * p1.size) >= minIntersectRatio)
                {
                    descInliersCount++;
                }
            }

            float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
            if(descInliersRatio < minDescInliersRatio)
            {
                ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
                           descInliersRatio, minDescInliersRatio);
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                return;
            }
#if SHOW_DEBUG_LOG
            std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
#endif
        }
        ts->set_failed_test_info( cvtest::TS::OK );
    }

    Ptr<FeatureDetector> featureDetector;
    Ptr<DescriptorExtractor> descriptorExtractor;
    int normType;
    float minKeyPointMatchesRatio;
    float minDescInliersRatio;
};

// Tests registration

/*
 * Detector's rotation invariance check
 */
TEST(Features2d_RotationInvariance_Detector_SURF, regression)
{
619
    DetectorRotationInvarianceTest test(SURF::create(),
620 621 622 623 624 625 626
                                        0.44f,
                                        0.76f);
    test.safe_run();
}

TEST(Features2d_RotationInvariance_Detector_SIFT, DISABLED_regression)
{
627
    DetectorRotationInvarianceTest test(SIFT::create(),
628 629 630 631 632 633 634 635 636 637
                                        0.45f,
                                        0.70f);
    test.safe_run();
}

/*
 * Descriptors's rotation invariance check
 */
TEST(Features2d_RotationInvariance_Descriptor_SURF, regression)
{
638 639
    DescriptorRotationInvarianceTest test(SURF::create(),
                                          SURF::create(),
640 641 642 643 644 645 646
                                          NORM_L1,
                                          0.83f);
    test.safe_run();
}

TEST(Features2d_RotationInvariance_Descriptor_SIFT, regression)
{
647 648
    DescriptorRotationInvarianceTest test(SIFT::create(),
                                          SIFT::create(),
649 650 651 652 653 654 655 656 657 658
                                          NORM_L1,
                                          0.98f);
    test.safe_run();
}

/*
 * Detector's scale invariance check
 */
TEST(Features2d_ScaleInvariance_Detector_SURF, regression)
{
659
    DetectorScaleInvarianceTest test(SURF::create(),
660 661 662 663 664 665 666
                                     0.64f,
                                     0.84f);
    test.safe_run();
}

TEST(Features2d_ScaleInvariance_Detector_SIFT, regression)
{
667
    DetectorScaleInvarianceTest test(SIFT::create(),
668 669 670 671 672 673 674 675 676 677
                                     0.69f,
                                     0.99f);
    test.safe_run();
}

/*
 * Descriptor's scale invariance check
 */
TEST(Features2d_ScaleInvariance_Descriptor_SURF, regression)
{
678 679
    DescriptorScaleInvarianceTest test(SURF::create(),
                                       SURF::create(),
680 681 682 683 684 685 686
                                       NORM_L1,
                                       0.61f);
    test.safe_run();
}

TEST(Features2d_ScaleInvariance_Descriptor_SIFT, regression)
{
687 688
    DescriptorScaleInvarianceTest test(SIFT::create(),
                                       SIFT::create(),
689 690 691 692 693 694 695 696 697 698 699 700
                                       NORM_L1,
                                       0.78f);
    test.safe_run();
}


TEST(Features2d_RotationInvariance2_Detector_SURF, regression)
{
    Mat cross(100, 100, CV_8UC1, Scalar(255));
    line(cross, Point(30, 50), Point(69, 50), Scalar(100), 3);
    line(cross, Point(50, 30), Point(50, 69), Scalar(100), 3);

701
    Ptr<SURF> surf = SURF::create(8000., 3, 4, true, false);
702 703

    vector<KeyPoint> keypoints;
704
    surf->detect(cross, keypoints);
705 706 707 708 709 710

    ASSERT_EQ(keypoints.size(), (vector<KeyPoint>::size_type) 5);
    ASSERT_LT( fabs(keypoints[1].response - keypoints[2].response), 1e-6);
    ASSERT_LT( fabs(keypoints[1].response - keypoints[3].response), 1e-6);
    ASSERT_LT( fabs(keypoints[1].response - keypoints[4].response), 1e-6);
}