structured_edge_detection.cpp 30.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

40 41
#include "precomp.hpp"

42 43 44 45
#include <vector>
#include <algorithm>
#include <iterator>
#include <iostream>
46
#include <cmath>
47 48 49

#include "advanced_types.hpp"

50 51 52 53 54 55 56 57
#ifdef CV_CXX11
#define CV_USE_PARALLEL_PREDICT_EDGES_1 1
#define CV_USE_PARALLEL_PREDICT_EDGES_2 0  //1, see https://github.com/opencv/opencv_contrib/issues/2346
#else
#define CV_USE_PARALLEL_PREDICT_EDGES_1 0
#define CV_USE_PARALLEL_PREDICT_EDGES_2 0
#endif

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/********************* Helper functions *********************/

/*!
 * Lightweight wrapper over cv::resize
 *
 * \param src : source image to resize
 * \param dst : destination image size
 * \return resized image
 */
static cv::Mat imresize(const cv::Mat &src, const cv::Size &nSize)
{
    cv::Mat dst;
    if (nSize.width < src.size().width
    &&  nSize.height < src.size().height)
        cv::resize(src, dst, nSize, 0.0, 0.0, cv::INTER_AREA);
    else
        cv::resize(src, dst, nSize, 0.0, 0.0, cv::INTER_LINEAR);

    return dst;
}

/*!
 * The function filters src with triangle filter with radius equal rad
 *
 * \param src : source image to filter
 * \param rad : radius of filtering kernel
 * \return filtering result
 */
static cv::Mat imsmooth(const cv::Mat &src, const int rad)
{
    if (rad == 0)
        return src;
    else
    {
92
        const float p = 12.0f/rad/(rad + 2) - 2;
93 94 95 96 97 98 99 100 101
        cv::Mat dst;

        if (rad <= 1)
        {
            CV_INIT_VECTOR(kernelXY, float, {1/(p + 2), p/(p + 2), 1/(p + 2)});
            cv::sepFilter2D(src, dst, -1, kernelXY, kernelXY);
        }
        else
        {
102
            float nrml = CV_SQR(rad + 1.0f);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

            std::vector <float> kernelXY(2*rad + 1);
            for (int i = 0; i <= rad; ++i)
            {
                kernelXY[2*rad - i] = (i + 1) / nrml;
                kernelXY[i] = (i + 1) / nrml;
            }
            sepFilter2D(src, dst, -1, kernelXY, kernelXY);
        }

        return dst;
    }
}

/*!
 *  The function implements rgb to luv conversion in a way similar
 *  to UCSD computer vision toolbox
 *
 * \param src : source image (RGB, float, in [0;1]) to convert
 * \return converted image in luv colorspace
 */
static cv::Mat rgb2luv(const cv::Mat &src)
{
    cv::Mat dst(src.size(), src.type());

    const float a  = CV_CUBE(29.0f)/27;
    const float y0 = 8.0f/a;

    const float mX[] = {0.430574f, 0.341550f, 0.178325f};
    const float mY[] = {0.222015f, 0.706655f, 0.071330f};
    const float mZ[] = {0.020183f, 0.129553f, 0.939180f};

    const float maxi= 1.0f/270;
    const float minu=  -88*maxi;
    const float minv= -134*maxi;

    const float un = 0.197833f;
    const float vn = 0.468331f;

    // build (padded) lookup table for y->l conversion assuming y in [0,1]
    std::vector <float> lTable(1024);
    for (int i = 0; i < 1024; ++i)
    {
        float y = i/1024.0f;
        float l = y > y0 ? 116*powf(y, 1.0f/3.0f) - 16 : y*a;

        lTable[i] = l*maxi;
    }
    for (int i = 0; i < 40; ++i)
        lTable.push_back(*--lTable.end());

    const int nchannels = 3;

    for (int i = 0; i < src.rows; ++i)
    {
        const float *pSrc = src.ptr<float>(i);
        float *pDst = dst.ptr<float>(i);

        for (int j = 0; j < src.cols*nchannels; j += nchannels)
        {
            const float rgb[] = {pSrc[j + 0], pSrc[j + 1], pSrc[j + 2]};

            const float xyz[] = {mX[0]*rgb[0] + mX[1]*rgb[1] + mX[2]*rgb[2],
                                 mY[0]*rgb[0] + mY[1]*rgb[1] + mY[2]*rgb[2],
                                 mZ[0]*rgb[0] + mZ[1]*rgb[1] + mZ[2]*rgb[2]};
168
            const float nz = 1.0f / float(xyz[0] + 15*xyz[1] + 3*xyz[2] + 1e-35);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

            const float l = pDst[j] = lTable[cvFloor(1024*xyz[1])];

            pDst[j + 1] = l * (13*4*xyz[0]*nz - 13*un) - minu;;
            pDst[j + 2] = l * (13*9*xyz[1]*nz - 13*vn) - minv;
        }
    }

    return dst;
}

/*!
 * The function computes gradient magnitude and weighted (with magnitude)
 * orientation histogram. Magnitude is additionally normalized
 * by dividing on imsmooth(M, gnrmRad) + 0.01;
 *
 * \param src : source image
 * \param magnitude : gradient magnitude
 * \param histogram : gradient orientation nBins-channels histogram
 * \param nBins : number of gradient orientations
 * \param pSize : factor to downscale histogram
 * \param gnrmRad : radius for magnitude normalization
 */
static void gradientHist(const cv::Mat &src, cv::Mat &magnitude, cv::Mat &histogram,
                         const int nBins, const int pSize, const int gnrmRad)
{
    cv::Mat phase, Dx, Dy;

    magnitude.create( src.size(), cv::DataType<float>::type );
    phase.create( src.size(), cv::DataType<float>::type );
berak's avatar
berak committed
199 200
    histogram.create( cv::Size( cvCeil(src.size().width/float(pSize)),
                                cvCeil(src.size().height/float(pSize)) ),
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        CV_MAKETYPE(cv::DataType<float>::type, nBins) );

    histogram.setTo(0);

    cv::Sobel( src, Dx, cv::DataType<float>::type,
        1, 0, 1, 1.0, 0.0, cv::BORDER_REFLECT );
    cv::Sobel( src, Dy, cv::DataType<float>::type,
        0, 1, 1, 1.0, 0.0, cv::BORDER_REFLECT );

    int nchannels = src.channels();

    for (int i = 0; i < src.rows; ++i)
    {
        const float *pDx = Dx.ptr<float>(i);
        const float *pDy = Dy.ptr<float>(i);

        float *pMagnitude = magnitude.ptr<float>(i);
        float *pPhase = phase.ptr<float>(i);

        for (int j = 0; j < src.cols*nchannels; j += nchannels)
        {
Bellaktris's avatar
Bellaktris committed
222
            float fMagn = float(-1e-5), fdx = 0, fdy = 0;
223 224 225 226 227 228 229 230 231 232 233
            for (int k = 0; k < nchannels; ++k)
            {
                float cMagn = CV_SQR( pDx[j + k] ) + CV_SQR( pDy[j + k] );
                if (cMagn > fMagn)
                {
                    fMagn = cMagn;
                    fdx = pDx[j + k];
                    fdy = pDy[j + k];
                }
            }

234
            pMagnitude[j/nchannels] = sqrtf(fMagn);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

            float angle = cv::fastAtan2(fdy, fdx) / 180.0f - 1.0f * (fdy < 0);
            if (std::fabs(fdx) + std::fabs(fdy) < 1e-5)
                angle = 0.5f;
            pPhase[j/nchannels] = angle;
        }
    }

    magnitude /= imsmooth( magnitude, gnrmRad )
        + 0.01*cv::Mat::ones( magnitude.size(), magnitude.type() );

    for (int i = 0; i < phase.rows; ++i)
    {
        const float *pPhase = phase.ptr<float>(i);
        const float *pMagn  = magnitude.ptr<float>(i);

        float *pHist = histogram.ptr<float>(i/pSize);

        for (int j = 0; j < phase.cols; ++j)
254
        {
olivierpascal's avatar
olivierpascal committed
255 256 257 258 259 260
            int angle = cvRound(pPhase[j]*nBins);
            if(angle >= nBins)
            {
              angle = 0;
            }
            const int index = (j/pSize)*nBins + angle;
261 262
            pHist[index] += pMagn[j] / CV_SQR(pSize);
        }
263 264 265
    }
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/*!
 * The class parallelizing the edgenms algorithm.
 *
 * \param E : edge image
 * \param O : orientation image
 * \param dst : destination image
 * \param r : radius for NMS suppression
 * \param s : radius for boundary suppression
 * \param m : multiplier for conservative suppression
 */
class NmsInvoker : public cv::ParallelLoopBody
{

private:
  const cv::Mat &E;
  const cv::Mat &O;
  cv::Mat &dst;
  const int r;
  const float m;

public:
  NmsInvoker(const cv::Mat &_E, const cv::Mat &_O, cv::Mat &_dst, const int _r, const float _m)
              : E(_E), O(_O), dst(_dst), r(_r), m(_m)
              {
              }

292
  void operator()(const cv::Range &range) const CV_OVERRIDE
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
  {
     for (int x = range.start; x < range.end; x++)
     {
       const float *e_ptr = E.ptr<float>(x);
       const float *o_ptr = O.ptr<float>(x);
       float *dst_ptr = dst.ptr<float>(x);
       for (int y=0; y < E.cols; y++)
       {
         float e = e_ptr[y];
         dst_ptr[y] = e;
         if (!e) continue;
         e *= m;
         float coso = cos(o_ptr[y]);
         float sino = sin(o_ptr[y]);
         for (int d=-r; d<=r; d++)
         {
           if (d)
           {
             float xdcos = x+d*coso;
             float ydsin = y+d*sino;
             xdcos = xdcos < 0 ? 0 : (xdcos > E.rows - 1.001f ? E.rows - 1.001f : xdcos);
             ydsin = ydsin < 0 ? 0 : (ydsin > E.cols - 1.001f ? E.cols - 1.001f : ydsin);
             int x0 = (int)xdcos;
             int y0 = (int)ydsin;
             int x1 = x0 + 1;
             int y1 = y0 + 1;
             float dx0 = xdcos - x0;
             float dy0 = ydsin - y0;
             float dx1 = 1 - dx0;
             float dy1 = 1 - dy0;
             float e0 = E.at<float>(x0, y0) * dx1 * dy1 +
                         E.at<float>(x1, y0) * dx0 * dy1 +
                         E.at<float>(x0, y1) * dx1 * dy0 +
                         E.at<float>(x1, y1) * dx0 * dy0;

             if(e < e0)
             {
               dst_ptr[y] = 0;
               break;
             }
           }
         }

       }
     }
  }
};

341 342 343 344
/********************* RFFeatureGetter class *********************/

namespace cv
{
345 346
namespace ximgproc
{
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

class RFFeatureGetterImpl : public RFFeatureGetter
{
public:
    /*!
     * Default constructor
     */
    RFFeatureGetterImpl() : name("RFFeatureGetter"){}

    /*!
     * The method extracts features from img and store them to features.
     * Extracted features are appropriate for StructuredEdgeDetection::predictEdges.
     *
     * \param src : source image (RGB, float, in [0;1]) to extract features
     * \param features : destination feature image
     *
     * \param gnrmRad : __rf.options.gradientNormalizationRadius
     * \param gsmthRad : __rf.options.gradientSmoothingRadius
     * \param shrink : __rf.options.shrinkNumber
     * \param outNum : __rf.options.numberOfOutputChannels
     * \param gradNum : __rf.options.numberOfGradientOrientations
     */
369
    virtual void getFeatures(const Mat &src, Mat &features, const int gnrmRad, const int gsmthRad,
370
                             const int shrink, const int outNum, const int gradNum) const CV_OVERRIDE
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    {
        cv::Mat luvImg = rgb2luv(src);

        std::vector <cv::Mat> featureArray;

        cv::Size nSize = src.size() / float(shrink);
        split( imresize(luvImg, nSize), featureArray );

        CV_INIT_VECTOR(scales, float, {1.0f, 0.5f});

        for (size_t i = 0; i < scales.size(); ++i)
        {
            int pSize = std::max( 1, int(shrink*scales[i]) );

            cv::Mat magnitude, histogram;
            gradientHist(/**/ imsmooth(imresize(luvImg, scales[i]*src.size()), gsmthRad),
                magnitude, histogram, gradNum, pSize, gnrmRad /**/);

            featureArray.push_back(/**/ imresize( magnitude, nSize ).clone() /**/);
            featureArray.push_back(/**/ imresize( histogram, nSize ).clone() /**/);
        }

        // Mixing
        int resType = CV_MAKETYPE(cv::DataType<float>::type, outNum);
        features.create(nSize, resType);

        std::vector <int> fromTo;
        for (int i = 0; i < 2*outNum; ++i)
            fromTo.push_back(i/2);

        mixChannels(featureArray, features, fromTo);
    }

protected:
    /*! algorithm name */
    String name;
};

409
Ptr<RFFeatureGetter> createRFFeatureGetter()
410 411 412 413
{
        return makePtr<RFFeatureGetterImpl>();
}

414 415
}
}
416 417 418 419 420

/********************* StructuredEdgeDetection class *********************/

namespace cv
{
421 422
namespace ximgproc
{
423 424 425 426 427 428 429 430 431 432

class StructuredEdgeDetectionImpl : public StructuredEdgeDetection
{
public:
    /*!
     * This constructor loads __rf model from filename
     *
     * \param filename : name of the file where the model is stored
     */
    StructuredEdgeDetectionImpl(const cv::String &filename,
433
        Ptr<const RFFeatureGetter> _howToGetFeatures)
434
        : name("StructuredEdgeDetection"),
435
          howToGetFeatures( (!_howToGetFeatures.empty())
Bellaktris's avatar
Bellaktris committed
436
                          ? _howToGetFeatures
437
                          : createRFFeatureGetter().staticCast<const RFFeatureGetter>() )
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    {
        cv::FileStorage modelFile(filename, FileStorage::READ);
        CV_Assert( modelFile.isOpened() );

        __rf.options.stride
            = modelFile["options"]["stride"];
        __rf.options.shrinkNumber
            = modelFile["options"]["shrinkNumber"];
        __rf.options.patchSize
            = modelFile["options"]["patchSize"];
        __rf.options.patchInnerSize
            = modelFile["options"]["patchInnerSize"];

        __rf.options.numberOfGradientOrientations
            = modelFile["options"]["numberOfGradientOrientations"];
        __rf.options.gradientSmoothingRadius
            = modelFile["options"]["gradientSmoothingRadius"];
        __rf.options.regFeatureSmoothingRadius
            = modelFile["options"]["regFeatureSmoothingRadius"];
        __rf.options.ssFeatureSmoothingRadius
            = modelFile["options"]["ssFeatureSmoothingRadius"];
        __rf.options.gradientNormalizationRadius
            = modelFile["options"]["gradientNormalizationRadius"];

        __rf.options.selfsimilarityGridSize
            = modelFile["options"]["selfsimilarityGridSize"];

        __rf.options.numberOfTrees
            = modelFile["options"]["numberOfTrees"];
        __rf.options.numberOfTreesToEvaluate
            = modelFile["options"]["numberOfTreesToEvaluate"];

        __rf.options.numberOfOutputChannels =
            2*(__rf.options.numberOfGradientOrientations + 1) + 3;
        //--------------------------------------------

        cv::FileNode childs = modelFile["childs"];
        cv::FileNode featureIds = modelFile["featureIds"];

        std::vector <int> currentTree;

        for(cv::FileNodeIterator it = childs.begin();
            it != childs.end(); ++it)
        {
            (*it) >> currentTree;
            std::copy(currentTree.begin(), currentTree.end(),
                std::back_inserter(__rf.childs));
        }

        for(cv::FileNodeIterator it = featureIds.begin();
            it != featureIds.end(); ++it)
        {
            (*it) >> currentTree;
            std::copy(currentTree.begin(), currentTree.end(),
                std::back_inserter(__rf.featureIds));
        }

        cv::FileNode thresholds = modelFile["thresholds"];
        std::vector <float> fcurrentTree;

        for(cv::FileNodeIterator it = thresholds.begin();
            it != thresholds.end(); ++it)
        {
            (*it) >> fcurrentTree;
            std::copy(fcurrentTree.begin(), fcurrentTree.end(),
                std::back_inserter(__rf.thresholds));
        }

        cv::FileNode edgeBoundaries = modelFile["edgeBoundaries"];
        cv::FileNode edgeBins = modelFile["edgeBins"];

        for(cv::FileNodeIterator it = edgeBoundaries.begin();
            it != edgeBoundaries.end(); ++it)
        {
            (*it) >> currentTree;
            std::copy(currentTree.begin(), currentTree.end(),
                std::back_inserter(__rf.edgeBoundaries));
        }

        for(cv::FileNodeIterator it = edgeBins.begin();
            it != edgeBins.end(); ++it)
        {
            (*it) >> currentTree;
            std::copy(currentTree.begin(), currentTree.end(),
                std::back_inserter(__rf.edgeBins));
        }

        __rf.numberOfTreeNodes = int( __rf.childs.size() ) / __rf.options.numberOfTrees;
    }

    /*!
     * The function detects edges in src and draw them to dst
     *
531 532
     * \param _src : source image (RGB, float, in [0;1]) to detect edges
     * \param _dst : destination image (grayscale, float, in [0;1])
533 534
     *              where edges are drawn
     */
535
    void detectEdges(cv::InputArray _src, cv::OutputArray _dst) const CV_OVERRIDE
536
    {
537
        CV_Assert( _src.type() == CV_32FC3 );
538

539 540 541
        _dst.createSameSize( _src, cv::DataType<float>::type );
        _dst.setTo(0);
        Mat dst = _dst.getMat();
542 543 544 545 546

        int padding = ( __rf.options.patchSize
            - __rf.options.patchInnerSize )/2;

        cv::Mat nSrc;
547
        copyMakeBorder( _src, nSrc, padding, padding,
548 549 550 551 552 553 554 555 556 557 558 559
            padding, padding, BORDER_REFLECT );

        NChannelsMat features;
        createRFFeatureGetter()->getFeatures( nSrc, features,
            __rf.options.gradientNormalizationRadius,
            __rf.options.gradientSmoothingRadius,
            __rf.options.shrinkNumber,
            __rf.options.numberOfOutputChannels,
            __rf.options.numberOfGradientOrientations );
        predictEdges( features, dst );
    }

560 561 562 563 564 565 566
    /*!
     * The function computes orientation from edge image.
     *
     * \param src : edge image.
     * \param dst : orientation image.
     * \param r : filter radius.
     */
567
    void computeOrientation(cv::InputArray _src, cv::OutputArray _dst) const CV_OVERRIDE
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    {
      CV_Assert( _src.type() == CV_32FC1 );

      cv::Mat Oxx, Oxy, Oyy;

      _dst.createSameSize( _src, _src.type() );
      _dst.setTo(0);

      Mat src = _src.getMat();
      cv::Mat E_conv = imsmooth(src, __rf.options.gradientNormalizationRadius);

      Sobel(E_conv, Oxx, -1, 2, 0);
      Sobel(E_conv, Oxy, -1, 1, 1);
      Sobel(E_conv, Oyy, -1, 0, 2);

      Mat dst = _dst.getMat();
      float *o = dst.ptr<float>();
      float *oxx = Oxx.ptr<float>();
      float *oxy = Oxy.ptr<float>();
      float *oyy = Oyy.ptr<float>();
      for (int i = 0; i < dst.rows * dst.cols; i++)
      {
          int xysign = -((oxy[i] > 0) - (oxy[i] < 0));
          o[i] = (atan((oyy[i] * xysign / (oxx[i] + 1e-5))) > 0) ? (float) fmod(
592 593
                  atan((oyy[i] * xysign / (oxx[i] + 1e-5))), CV_PI) : (float) fmod(
                  atan((oyy[i] * xysign / (oxx[i] + 1e-5))) + CV_PI, CV_PI);
594 595 596 597 598 599 600 601 602 603 604 605 606
      }
    }

     /*!
     * The function suppress edges where edge is stronger in orthogonal direction
     * \param edge_image : edge image from detectEdges function.
     * \param orientation_image : orientation image from computeOrientation function.
     * \param _dst : suppressed image (grayscale, float, in [0;1])
     * \param r : radius for NMS suppression.
     * \param s : radius for boundary suppression.
     * \param m : multiplier for conservative suppression.
     * \param isParallel: enables/disables parallel computing.
     */
607
    void edgesNms(cv::InputArray edge_image, cv::InputArray orientation_image, cv::OutputArray _dst, int r, int s, float m, bool isParallel) const CV_OVERRIDE
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    {
        CV_Assert(edge_image.type() == CV_32FC1);
        CV_Assert(orientation_image.type() == CV_32FC1);

        cv::Mat E = edge_image.getMat();
        cv::Mat O = orientation_image.getMat();
        cv::Mat E_t = E.t();
        cv::Mat O_t = O.t();

        cv::Mat dst = _dst.getMat();
        dst.create(E.cols, E.rows, E.type());
        dst.setTo(0);

        cv::Range sizeRange = cv::Range(0, E_t.rows);
        NmsInvoker body = NmsInvoker(E_t, O_t, dst, r, m);
        if (isParallel)
        {
          cv::parallel_for_(sizeRange, body);
        } else
        {
          body(sizeRange);
        }

        s = s > E_t.rows / 2 ? E_t.rows / 2 : s;
        s = s > E_t.cols / 2 ? E_t.cols / 2 : s;
        for (int x=0; x<s; x++)
        {
          for (int y=0; y<E_t.cols; y++)
          {
            dst.at<float>(x, y) *= x / (float)s;
            dst.at<float>(E_t.rows-1-x, y) *= x / (float)s;
          }
        }

        for (int x=0; x < E_t.rows; x++)
        {
          for (int y=0; y < s; y++)
          {
            dst.at<float>(x, y) *= y / (float)s;
            dst.at<float>(x, E_t.cols-1-y) *= y / (float)s;
          }
        }
      transpose(dst, dst);
      dst.copyTo(_dst);
    }


655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
protected:
    /*!
     * Private method used by process method. The function
     * predict edges in n-channel feature image and store them to dst.
     *
     * \param features : source image (n-channels, float) to detect edges
     * \param dst : destination image (grayscale, float, in [0;1]) where edges are drawn
     */
    void predictEdges(const NChannelsMat &features, cv::Mat &dst) const
    {
        int shrink = __rf.options.shrinkNumber;
        int rfs = __rf.options.regFeatureSmoothingRadius;
        int sfs = __rf.options.ssFeatureSmoothingRadius;

        int nTreesEval = __rf.options.numberOfTreesToEvaluate;
        int nTrees = __rf.options.numberOfTrees;
        int nTreesNodes = __rf.numberOfTreeNodes;

        const int nchannels = features.channels();
        int pSize  = __rf.options.patchSize;

        int nFeatures = CV_SQR(pSize/shrink)*nchannels;
        int outNum = __rf.options.numberOfOutputChannels;

        int stride = __rf.options.stride;
        int ipSize = __rf.options.patchInnerSize;
        int gridSize = __rf.options.selfsimilarityGridSize;

        const int height = cvCeil( double(features.rows*shrink - pSize) / stride );
        const int width  = cvCeil( double(features.cols*shrink - pSize) / stride );
        // image size in patches with overlapping

        //-------------------------------------------------------------------------

        NChannelsMat regFeatures = imsmooth(features, cvRound(rfs / float(shrink)));
        NChannelsMat  ssFeatures = imsmooth(features, cvRound(sfs / float(shrink)));

        NChannelsMat indexes(height, width, CV_MAKETYPE(DataType<int>::type, nTreesEval));

        std::vector <int> offsetI(/**/ CV_SQR(pSize/shrink)*nchannels, 0);
        for (int i = 0; i < CV_SQR(pSize/shrink)*nchannels; ++i)
        {
            int z = i / CV_SQR(pSize/shrink);
            int y = ( i % CV_SQR(pSize/shrink) )/(pSize/shrink);
            int x = ( i % CV_SQR(pSize/shrink) )%(pSize/shrink);

            offsetI[i] = x*features.cols*nchannels + y*nchannels + z;
        }
        // lookup table for mapping linear index to offsets

        std::vector <int> offsetE(/**/ CV_SQR(ipSize)*outNum, 0);
        for (int i = 0; i < CV_SQR(ipSize)*outNum; ++i)
        {
            int z = i / CV_SQR(ipSize);
            int y = ( i % CV_SQR(ipSize) )/ipSize;
            int x = ( i % CV_SQR(ipSize) )%ipSize;

            offsetE[i] = x*dst.cols*outNum + y*outNum + z;
        }
        // lookup table for mapping linear index to offsets

        std::vector <int> offsetX( CV_SQR(gridSize)*(CV_SQR(gridSize) - 1)/2 * nchannels, 0);
        std::vector <int> offsetY( CV_SQR(gridSize)*(CV_SQR(gridSize) - 1)/2 * nchannels, 0);

        int hc = cvRound( (pSize/shrink) / (2.0*gridSize) );
        // half of cell
        std::vector <int> gridPositions;
        for(int i = 0; i < gridSize; i++)
723
            gridPositions.push_back( int( (i+1)*(pSize/shrink + 2*hc - 1)/(gridSize + 1.0) - hc + 0.5f ) );
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

        for (int i = 0, n = 0; i < CV_SQR(gridSize)*nchannels; ++i)
            for (int j = (i%CV_SQR(gridSize)) + 1; j < CV_SQR(gridSize); ++j, ++n)
            {
                int z = i / CV_SQR(gridSize);

                int x1 = gridPositions[i%CV_SQR(gridSize)%gridSize];
                int y1 = gridPositions[i%CV_SQR(gridSize)/gridSize];

                int x2 = gridPositions[j%gridSize];
                int y2 = gridPositions[j/gridSize];

                offsetX[n] = x1*features.cols*nchannels + y1*nchannels + z;
                offsetY[n] = x2*features.cols*nchannels + y2*nchannels + z;
            }
            // lookup tables for mapping linear index to offset pairs
740

741
        #if CV_USE_PARALLEL_PREDICT_EDGES_1
742 743 744
        parallel_for_(cv::Range(0, height), [&](const cv::Range& range)
        #else
        const cv::Range range(0, height);
745
        #endif
746
        {
747 748 749
            for(int i = range.start; i < range.end; ++i) {
                float *regFeaturesPtr = regFeatures.ptr<float>(i*stride/shrink);
                float  *ssFeaturesPtr = ssFeatures.ptr<float>(i*stride/shrink);
750

751
                int *indexPtr = indexes.ptr<int>(i);
752

753 754
                for (int j = 0, k = 0; j < width; ++k, j += !(k %= nTreesEval))
                    // for j,k in [0;width)x[0;nTreesEval)
755
                {
756 757 758
                    int baseNode = ( ((i + j)%(2*nTreesEval) + k)%nTrees )*nTreesNodes;
                    int currentNode = baseNode;
                    // select root node of the tree to evaluate
759

760 761
                    int offset = (j*stride/shrink)*nchannels;
                    while ( __rf.childs[currentNode] != 0 )
762
                    {
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
                        int currentId = __rf.featureIds[currentNode];
                        float currentFeature;

                        if (currentId >= nFeatures)
                        {
                            int xIndex = offsetX[currentId - nFeatures];
                            float A = ssFeaturesPtr[offset + xIndex];

                            int yIndex = offsetY[currentId - nFeatures];
                            float B = ssFeaturesPtr[offset + yIndex];

                            currentFeature = A - B;
                        }
                        else
                            currentFeature = regFeaturesPtr[offset + offsetI[currentId]];

                        // compare feature to threshold and move left or right accordingly
                        if (currentFeature < __rf.thresholds[currentNode])
                            currentNode = baseNode + __rf.childs[currentNode] - 1;
                        else
                            currentNode = baseNode + __rf.childs[currentNode];
784 785
                    }

786 787
                    indexPtr[j*nTreesEval + k] = currentNode;
                }
788 789
            }
        }
790
        #if CV_USE_PARALLEL_PREDICT_EDGES_1
791 792
        );
        #endif
793 794 795 796 797 798

        NChannelsMat dstM(dst.size(),
            CV_MAKETYPE(DataType<float>::type, outNum));
        dstM.setTo(0);

        float step = 2.0f * CV_SQR(stride) / CV_SQR(ipSize) / nTreesEval;
799
        #if CV_USE_PARALLEL_PREDICT_EDGES_2
800
        parallel_for_(cv::Range(0, height), [&](const cv::Range& range)
801 802
        #elif CV_USE_PARALLEL_PREDICT_EDGES_1
        const cv::Range range(0, height);
803
        #endif
804
        {
805 806 807 808
            for(int i = range.start; i < range.end; ++i)
            {
                int *pIndex = indexes.ptr<int>(i);
                float *pDst = dstM.ptr<float>(i*stride);
809 810 811 812 813

                for (int j = 0, k = 0; j < width; ++k, j += !(k %= nTreesEval))
                {// for j,k in [0;width)x[0;nTreesEval)

                    int currentNode = pIndex[j*nTreesEval + k];
814 815 816 817 818
                    size_t sizeBoundaries = __rf.edgeBoundaries.size();
                    int convertedBoundaries = static_cast<int>(sizeBoundaries);
                    int nBnds = (convertedBoundaries - 1) / (nTreesNodes * nTrees);
                    int start = __rf.edgeBoundaries[currentNode * nBnds];
                    int finish = __rf.edgeBoundaries[currentNode * nBnds + 1];
819 820 821 822 823 824 825 826

                    if (start == finish)
                        continue;

                    int offset = j*stride*outNum;
                    for (int p = start; p < finish; ++p)
                        pDst[offset + offsetE[__rf.edgeBins[p]]] += step;
                }
827
            }
828
        }
829
        #if CV_USE_PARALLEL_PREDICT_EDGES_2
830 831
        );
        #endif
832

833
        cv::reduce( dstM.reshape(1, int( dstM.total() ) ), dstM, 2, CV_REDUCE_SUM);
834 835 836 837 838 839 840 841 842
        imsmooth( dstM.reshape(1, dst.rows), 1 ).copyTo(dst);
    }

/********************* Members *********************/
protected:
    /*! algorithm name */
    String name;

    /*! optional feature getter (getFeatures method) */
843
    Ptr<const RFFeatureGetter> howToGetFeatures;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

    /*! random forest used to detect edges */
    struct RandomForest
    {
        /*! random forest options, e.g. number of trees */
        struct RandomForestOptions
        {
            // model params

            int numberOfOutputChannels; /*!< number of edge orientation bins for output */

            int patchSize;              /*!< width of image patches */
            int patchInnerSize;         /*!< width of predicted part inside patch*/

            // feature params

            int regFeatureSmoothingRadius;    /*!< radius for smoothing of regular features
                                               *   (using convolution with triangle filter) */

            int ssFeatureSmoothingRadius;     /*!< radius for smoothing of additional features
                                               *   (using convolution with triangle filter) */

            int shrinkNumber;                 /*!< amount to shrink channels */

            int numberOfGradientOrientations; /*!< number of orientations per gradient scale */

            int gradientSmoothingRadius;      /*!< radius for smoothing of gradients
                                               *   (using convolution with triangle filter) */

            int gradientNormalizationRadius;  /*!< gradient normalization radius */
            int selfsimilarityGridSize;       /*!< number of self similarity cells */

            // detection params
            int numberOfTrees;            /*!< number of trees in forest to train */
            int numberOfTreesToEvaluate;  /*!< number of trees to evaluate per location */

            int stride;                   /*!< stride at which to compute edges */

        } options;

        int numberOfTreeNodes;

        std::vector <int> featureIds;     /*!< feature coordinate thresholded at k-th node */
        std::vector <float> thresholds;   /*!< threshold applied to featureIds[k] at k-th node */
        std::vector <int> childs;         /*!< k --> child[k] - 1, child[k] */

        std::vector <int> edgeBoundaries; /*!< ... */
        std::vector <int> edgeBins;       /*!< ... */
    } __rf;
};

Ptr<StructuredEdgeDetection> createStructuredEdgeDetection(const String &model,
896
    Ptr<const RFFeatureGetter> howToGetFeatures)
897 898 899 900
{
        return makePtr<StructuredEdgeDetectionImpl>(model, howToGetFeatures);
}

901
}
902
}