test_radial_variance_hash.cpp 4.12 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "test_precomp.hpp"

using namespace cv;
using namespace cv::img_hash;


/**
 *The expected results of this test case are come from the phash library,
 *I use it as golden model
 */
class CV_RadialVarianceHashTest : public cvtest::BaseTest
{
public:
    CV_RadialVarianceHashTest();
protected:
    void run(int /* idx */);

    //this test case do not use the original "golden data"
    //of pHash library, I add a small value to nb_pixels in
    //the function "ph_feature_vector" to avoid NaN value
    void testComputeHash();
    void testFeatures();
    void testHash();
    void testPixPerLine();
    void testProjection();

    cv::Mat input;
    Ptr<cv::img_hash::RadialVarianceHash> rvh;
};

CV_RadialVarianceHashTest::CV_RadialVarianceHashTest()
{
    input.create(8, 8, CV_8U);
    uchar *inPtr = input.ptr<uchar>(0);
    for(size_t i = 0; i != input.total(); ++i)
    {
        inPtr[i] = static_cast<uchar>(i);
    }
    rvh = RadialVarianceHash::create(1, 10);
}

void CV_RadialVarianceHashTest::testComputeHash()
{
    cv::Mat hashOne(1, 40, CV_8U);
    uchar buffer[] =
    {
      52,  41,  49,  64,  40,  67,  76,  71,  69,
      55,  58,  68,  72,  78,  63,  73,  66,  77,
      60,  57,  48,  59,  62,  74,  70,  47,  46,
      51,  45,  44,  42,  61,  54,  75,  50,  79,
      65,  43,  53,  56
    };
    cv::Mat hashTwo(1, 40, CV_8U, buffer);
    for(uchar i = 0; i != 40; ++i)
    {
      hashOne.at<uchar>(0, i) = i;
    }

    double const actual = rvh->compare(hashOne, hashTwo);
    ASSERT_NEAR(0.481051, actual, 0.0001);
}

void CV_RadialVarianceHashTest::testFeatures()
{
    std::vector<double> const &features = rvh->getFeatures();
    double const expectResult[] =
    {-1.35784,-0.42703,0.908487,-1.39327,1.17313,
     1.47515,-0.0156121,0.774335,-0.116755,-1.02059};
    for(size_t i = 0; i != features.size(); ++i)
    {
        ASSERT_NEAR(features[i], expectResult[i], 0.0001);
    }
}

void CV_RadialVarianceHashTest::testHash()
{
    cv::Mat const hash = rvh->getHash();
    uchar const expectResult[] =
    {
        127,  92,   0, 158, 101,
         88,  14, 136, 227, 160,
        127,  94,  27, 118, 240,
        166, 153,  96, 254, 162,
        127, 162, 255,  96, 153,
        166, 240, 118,  27,  94,
        127, 160, 227, 136,  14,
         88, 101, 158,   0,  92
    };
    for(int i = 0; i != hash.cols; ++i)
    {
        EXPECT_EQ(hash.at<uchar>(0, i), expectResult[i]);
    }
}

void CV_RadialVarianceHashTest::testPixPerLine()
{
  cv::Mat const pixPerLine = rvh->getPixPerLine(input);
  uchar const expectResult[] =
  {
    8,8,8,0,8,15,7,5,8,8,
  };
  bool const equal =
          std::equal(expectResult, expectResult + pixPerLine.total(),
          pixPerLine.ptr<int>(0));
  if(equal == false)
  {
    ts->printf(cvtest::TS::LOG, "Wrong pixel per line value \n");
    ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
  }
}

void CV_RadialVarianceHashTest::testProjection()
{
    cv::Mat const proj = rvh->getProjection();
    uchar const expectResult[] =
    {
      32,  33,  34,  35,  36,  37,  38,  39,
      16,  17,  18,  27,  36,  37,  46,  47,
       0,   9,  18,  19,  36,  45,  46,  55,
       0,   0,   0,   0,   0,   0,   0,   0,
       2,  10,  18,  27,  36,  44,  53,  61,
       4,  59,  51,  44,  36,  29,  22,  14,
       0,  58,  51,  43,  36,  30,  22,  15,
       0,   0,  58,  43,  36,  21,   6,   0,
      56,  49,  42,  43,  36,  21,  22,  15,
      40,  41,  42,  35,  36,  29,  22,  23
    };
    bool const equal =
            std::equal(expectResult, expectResult + proj.total(),
                       proj.ptr<uchar>(0));
    if(equal == false)
    {
      ts->printf(cvtest::TS::LOG, "Wrong projection value \n");
      ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
    }
}

void CV_RadialVarianceHashTest::run(int)
{
    testPixPerLine();
    testProjection();
    testFeatures();
    testComputeHash();
}

TEST(radial_variance_hash_test, accuracy) { CV_RadialVarianceHashTest test; test.safe_run(); }