retina_ocl.hpp 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other oclMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OCL_RETINA_HPP__
#define __OCL_RETINA_HPP__

#include "precomp.hpp"

#ifdef HAVE_OPENCV_OCL

// please refer to c++ headers for API comments
namespace cv
{
namespace bioinspired
{
namespace ocl
{
void normalizeGrayOutputCentredSigmoide(const float meanValue, const float sensitivity, cv::ocl::oclMat &in, cv::ocl::oclMat &out, const float maxValue = 255.f);
void normalizeGrayOutput_0_maxOutputValue(cv::ocl::oclMat &inputOutputBuffer, const float maxOutputValue = 255.0);
void normalizeGrayOutputNearZeroCentreredSigmoide(cv::ocl::oclMat &inputPicture, cv::ocl::oclMat &outputBuffer, const float sensitivity = 40, const float maxOutputValue = 255.0f);
void centerReductImageLuminance(cv::ocl::oclMat &inputOutputBuffer);

class BasicRetinaFilter
{
public:
    BasicRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns, const unsigned int parametersListSize = 1, const bool useProgressiveFilter = false);
    ~BasicRetinaFilter();
    inline void clearOutputBuffer()
    {
        _filterOutput = 0;
    }
    inline void clearSecondaryBuffer()
    {
        _localBuffer = 0;
    }
    inline void clearAllBuffers()
    {
        clearOutputBuffer();
        clearSecondaryBuffer();
    }
    void  resize(const unsigned int NBrows, const unsigned int NBcolumns);
    const cv::ocl::oclMat &runFilter_LPfilter(const cv::ocl::oclMat &inputFrame, const unsigned int filterIndex = 0);
    void  runFilter_LPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
    void  runFilter_LPfilter_Autonomous(cv::ocl::oclMat &inputOutputFrame, const unsigned int filterIndex = 0);
    const cv::ocl::oclMat &runFilter_LocalAdapdation(const cv::ocl::oclMat &inputOutputFrame, const cv::ocl::oclMat &localLuminance);
    void  runFilter_LocalAdapdation(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, cv::ocl::oclMat &outputFrame);
    const cv::ocl::oclMat &runFilter_LocalAdapdation_autonomous(const cv::ocl::oclMat &inputFrame);
    void  runFilter_LocalAdapdation_autonomous(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame);
    void  setLPfilterParameters(const float beta, const float tau, const float k, const unsigned int filterIndex = 0);
    inline void setV0CompressionParameter(const float v0, const float maxInputValue, const float)
    {
        _v0 = v0 * maxInputValue;
        _localLuminanceFactor = v0;
        _localLuminanceAddon = maxInputValue * (1.0f - v0);
        _maxInputValue = maxInputValue;
    }
    inline void setV0CompressionParameter(const float v0, const float meanLuminance)
    {
        this->setV0CompressionParameter(v0, _maxInputValue, meanLuminance);
    }
    inline void setV0CompressionParameter(const float v0)
    {
        _v0 = v0 * _maxInputValue;
        _localLuminanceFactor = v0;
        _localLuminanceAddon = _maxInputValue * (1.0f - v0);
    }
    inline void setV0CompressionParameterToneMapping(const float v0, const float maxInputValue, const float meanLuminance = 128.0f)
    {
        _v0 = v0 * maxInputValue;
        _localLuminanceFactor = 1.0f;
        _localLuminanceAddon = meanLuminance * _v0;
        _maxInputValue = maxInputValue;
    }
    inline void updateCompressionParameter(const float meanLuminance)
    {
        _localLuminanceFactor = 1;
        _localLuminanceAddon = meanLuminance * _v0;
    }
    inline float getV0CompressionParameter()
    {
        return _v0 / _maxInputValue;
    }
    inline const cv::ocl::oclMat &getOutput() const
    {
        return _filterOutput;
    }
    inline unsigned int getNBrows()
    {
        return _filterOutput.rows;
    }
    inline unsigned int getNBcolumns()
    {
        return _filterOutput.cols;
    }
    inline unsigned int getNBpixels()
    {
        return _filterOutput.size().area();
    }
    inline void normalizeGrayOutput_0_maxOutputValue(const float maxValue)
    {
        ocl::normalizeGrayOutput_0_maxOutputValue(_filterOutput, maxValue);
    }
    inline void normalizeGrayOutputCentredSigmoide()
    {
        ocl::normalizeGrayOutputCentredSigmoide(0.0, 2.0, _filterOutput, _filterOutput);
    }
    inline void centerReductImageLuminance()
    {
        ocl::centerReductImageLuminance(_filterOutput);
    }
    inline float getMaxInputValue()
    {
        return this->_maxInputValue;
    }
    inline void setMaxInputValue(const float newMaxInputValue)
    {
        this->_maxInputValue = newMaxInputValue;
    }

protected:

    int _NBrows;
    int _NBcols;
    unsigned int _halfNBrows;
    unsigned int _halfNBcolumns;

    cv::ocl::oclMat _filterOutput;
    cv::ocl::oclMat _localBuffer;

    std::valarray <float>_filteringCoeficientsTable;
    float _v0;
    float _maxInputValue;
    float _meanInputValue;
    float _localLuminanceFactor;
    float _localLuminanceAddon;

    float _a;
    float _tau;
    float _gain;

    void _spatiotemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &LPfilterOutput, const unsigned int coefTableOffset = 0);
    float _squaringSpatiotemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
    void _spatiotemporalLPfilter_Irregular(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
    void _localSquaringSpatioTemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &LPfilterOutput, const unsigned int *integrationAreas, const unsigned int filterIndex = 0);
    void _localLuminanceAdaptation(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, cv::ocl::oclMat &outputFrame, const bool updateLuminanceMean = true);
    void _localLuminanceAdaptation(cv::ocl::oclMat &inputOutputFrame, const cv::ocl::oclMat &localLuminance);
    void _localLuminanceAdaptationPosNegValues(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, float *outputFrame);
    void _horizontalCausalFilter_addInput(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame);
    void _horizontalAnticausalFilter(cv::ocl::oclMat &outputFrame);
    void _verticalCausalFilter(cv::ocl::oclMat &outputFrame);
    void _horizontalAnticausalFilter_Irregular(cv::ocl::oclMat &outputFrame, const cv::ocl::oclMat &spatialConstantBuffer);
    void _verticalCausalFilter_Irregular(cv::ocl::oclMat &outputFrame, const cv::ocl::oclMat &spatialConstantBuffer);
    void _verticalAnticausalFilter_multGain(cv::ocl::oclMat &outputFrame);
};

class MagnoRetinaFilter: public BasicRetinaFilter
{
public:
    MagnoRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns);
    virtual ~MagnoRetinaFilter();
    void clearAllBuffers();
    void resize(const unsigned int NBrows, const unsigned int NBcolumns);
    void setCoefficientsTable(const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float localAdaptIntegration_tau, const float localAdaptIntegration_k);

    const cv::ocl::oclMat &runFilter(const cv::ocl::oclMat &OPL_ON, const cv::ocl::oclMat &OPL_OFF);

    inline const cv::ocl::oclMat &getMagnoON() const
    {
        return _magnoXOutputON;
    }
    inline const cv::ocl::oclMat &getMagnoOFF() const
    {
        return _magnoXOutputOFF;
    }
    inline const cv::ocl::oclMat &getMagnoYsaturated() const
    {
        return _magnoYsaturated;
    }
    inline void normalizeGrayOutputNearZeroCentreredSigmoide()
    {
        ocl::normalizeGrayOutputNearZeroCentreredSigmoide(_magnoYOutput, _magnoYsaturated);
    }
    inline float getTemporalConstant()
    {
        return this->_filteringCoeficientsTable[2];
    }
private:
    cv::ocl::oclMat _previousInput_ON;
    cv::ocl::oclMat _previousInput_OFF;
    cv::ocl::oclMat _amacrinCellsTempOutput_ON;
    cv::ocl::oclMat _amacrinCellsTempOutput_OFF;
    cv::ocl::oclMat _magnoXOutputON;
    cv::ocl::oclMat _magnoXOutputOFF;
    cv::ocl::oclMat _localProcessBufferON;
    cv::ocl::oclMat _localProcessBufferOFF;
    cv::ocl::oclMat _magnoYOutput;
    cv::ocl::oclMat _magnoYsaturated;

    float _temporalCoefficient;
    void _amacrineCellsComputing(const cv::ocl::oclMat &OPL_ON,  const cv::ocl::oclMat &OPL_OFF);
};

class ParvoRetinaFilter: public BasicRetinaFilter
{
public:
    ParvoRetinaFilter(const unsigned int NBrows = 480, const unsigned int NBcolumns = 640);
    virtual ~ParvoRetinaFilter();
    void resize(const unsigned int NBrows, const unsigned int NBcolumns);
    void clearAllBuffers();
    void setOPLandParvoFiltersParameters(const float beta1, const float tau1, const float k1, const float beta2, const float tau2, const float k2);

    inline void setGanglionCellsLocalAdaptationLPfilterParameters(const float tau, const float k)
    {
        BasicRetinaFilter::setLPfilterParameters(0, tau, k, 2);
    }
    const cv::ocl::oclMat &runFilter(const cv::ocl::oclMat &inputFrame, const bool useParvoOutput = true);

    inline const cv::ocl::oclMat &getPhotoreceptorsLPfilteringOutput() const
    {
        return _photoreceptorsOutput;
    }

    inline const cv::ocl::oclMat &getHorizontalCellsOutput() const
    {
        return _horizontalCellsOutput;
    }

    inline const cv::ocl::oclMat &getParvoON() const
    {
        return _parvocellularOutputON;
    }

    inline const cv::ocl::oclMat &getParvoOFF() const
    {
        return _parvocellularOutputOFF;
    }

    inline const cv::ocl::oclMat &getBipolarCellsON() const
    {
        return _bipolarCellsOutputON;
    }

    inline const cv::ocl::oclMat &getBipolarCellsOFF() const
    {
        return _bipolarCellsOutputOFF;
    }

    inline float getPhotoreceptorsTemporalConstant()
    {
        return this->_filteringCoeficientsTable[2];
    }

    inline float getHcellsTemporalConstant()
    {
        return this->_filteringCoeficientsTable[5];
    }
private:
    cv::ocl::oclMat _photoreceptorsOutput;
    cv::ocl::oclMat _horizontalCellsOutput;
    cv::ocl::oclMat _parvocellularOutputON;
    cv::ocl::oclMat _parvocellularOutputOFF;
    cv::ocl::oclMat _bipolarCellsOutputON;
    cv::ocl::oclMat _bipolarCellsOutputOFF;
    cv::ocl::oclMat _localAdaptationOFF;
    cv::ocl::oclMat _localAdaptationON;
    cv::ocl::oclMat _parvocellularOutputONminusOFF;
    void _OPL_OnOffWaysComputing();
};
class RetinaColor: public BasicRetinaFilter
{
public:
    RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod = RETINA_COLOR_DIAGONAL);
    virtual ~RetinaColor();

    void clearAllBuffers();
    void resize(const unsigned int NBrows, const unsigned int NBcolumns);
    inline void runColorMultiplexing(const cv::ocl::oclMat &inputRGBFrame)
    {
        runColorMultiplexing(inputRGBFrame, _multiplexedFrame);
    }
    void runColorMultiplexing(const cv::ocl::oclMat &demultiplexedInputFrame, cv::ocl::oclMat &multiplexedFrame);
    void runColorDemultiplexing(const cv::ocl::oclMat &multiplexedColorFrame, const bool adaptiveFiltering = false, const float maxInputValue = 255.0);

    void setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0)
    {
        _saturateColors = saturateColors;
        _colorSaturationValue = colorSaturationValue;
    }

    void setChrominanceLPfilterParameters(const float beta, const float tau, const float k)
    {
        setLPfilterParameters(beta, tau, k);
    }

    bool applyKrauskopfLMS2Acr1cr2Transform(cv::ocl::oclMat &result);
    bool applyLMS2LabTransform(cv::ocl::oclMat &result);
    inline const cv::ocl::oclMat &getMultiplexedFrame() const
    {
        return _multiplexedFrame;
    }

    inline const cv::ocl::oclMat &getDemultiplexedColorFrame() const
    {
        return _demultiplexedColorFrame;
    }

    inline const cv::ocl::oclMat &getLuminance() const
    {
        return _luminance;
    }
    inline const cv::ocl::oclMat &getChrominance() const
    {
        return _chrominance;
    }
    void clipRGBOutput_0_maxInputValue(cv::ocl::oclMat &inputOutputBuffer, const float maxOutputValue = 255.0);
    void normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue = 255.0);
    inline void setDemultiplexedColorFrame(const cv::ocl::oclMat &demultiplexedImage)
    {
        _demultiplexedColorFrame = demultiplexedImage;
    }
protected:
    inline unsigned int bayerSampleOffset(unsigned int index)
    {
        return index + ((index / getNBcolumns()) % 2) * getNBpixels() + ((index % getNBcolumns()) % 2) * getNBpixels();
    }
    inline Rect getROI(int idx)
    {
        return Rect(0, idx * _NBrows, _NBcols, _NBrows);
    }
    int _samplingMethod;
    bool _saturateColors;
    float _colorSaturationValue;
    cv::ocl::oclMat _luminance;
    cv::ocl::oclMat _multiplexedFrame;
    cv::ocl::oclMat _RGBmosaic;
    cv::ocl::oclMat _tempMultiplexedFrame;
    cv::ocl::oclMat _demultiplexedTempBuffer;
    cv::ocl::oclMat _demultiplexedColorFrame;
    cv::ocl::oclMat _chrominance;
    cv::ocl::oclMat _colorLocalDensity;
    cv::ocl::oclMat _imageGradient;

    float _pR, _pG, _pB;
    bool _objectInit;

    void _initColorSampling();
    void _adaptiveSpatialLPfilter(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
    void _adaptiveHorizontalCausalFilter_addInput(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
    void _adaptiveVerticalAnticausalFilter_multGain(const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
    void _computeGradient(const cv::ocl::oclMat &luminance, cv::ocl::oclMat &gradient);
    void _normalizeOutputs_0_maxOutputValue(void);
    void _applyImageColorSpaceConversion(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const float *transformTable);
};
class RetinaFilter
{
public:
    RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode = false, const int samplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0);
    ~RetinaFilter();

    void clearAllBuffers();
    void resize(const unsigned int NBrows, const unsigned int NBcolumns);
    bool checkInput(const cv::ocl::oclMat &input, const bool colorMode);
    bool runFilter(const cv::ocl::oclMat &imageInput, const bool useAdaptiveFiltering = true, const bool processRetinaParvoMagnoMapping = false, const bool useColorMode = false, const bool inputIsColorMultiplexed = false);

    void setGlobalParameters(const float OPLspatialResponse1 = 0.7, const float OPLtemporalresponse1 = 1, const float OPLassymetryGain = 0, const float OPLspatialResponse2 = 5, const float OPLtemporalresponse2 = 1, const float LPfilterSpatialResponse = 5, const float LPfilterGain = 0, const float LPfilterTemporalresponse = 0, const float MovingContoursExtractorCoefficient = 5, const bool normalizeParvoOutput_0_maxOutputValue = false, const bool normalizeMagnoOutput_0_maxOutputValue = false, const float maxOutputValue = 255.0, const float maxInputValue = 255.0, const float meanValue = 128.0);

    inline void setPhotoreceptorsLocalAdaptationSensitivity(const float V0CompressionParameter)
    {
        _photoreceptorsPrefilter.setV0CompressionParameter(1 - V0CompressionParameter);
        _setInitPeriodCount();
    }

    inline void setParvoGanglionCellsLocalAdaptationSensitivity(const float V0CompressionParameter)
    {
        _ParvoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
        _setInitPeriodCount();
    }

    inline void setGanglionCellsLocalAdaptationLPfilterParameters(const float spatialResponse, const float temporalResponse)
    {
        _ParvoRetinaFilter.setGanglionCellsLocalAdaptationLPfilterParameters(temporalResponse, spatialResponse);
        _setInitPeriodCount();
    };

    inline void setMagnoGanglionCellsLocalAdaptationSensitivity(const float V0CompressionParameter)
    {
        _MagnoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
        _setInitPeriodCount();
    }

    void setOPLandParvoParameters(const float beta1, const float tau1, const float k1, const float beta2, const float tau2, const float k2, const float V0CompressionParameter)
    {
        _ParvoRetinaFilter.setOPLandParvoFiltersParameters(beta1, tau1, k1, beta2, tau2, k2);
        _ParvoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
        _setInitPeriodCount();
    }

    void setMagnoCoefficientsTable(const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float V0CompressionParameter, const float localAdaptintegration_tau, const float localAdaptintegration_k)
    {
        _MagnoRetinaFilter.setCoefficientsTable(parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, localAdaptintegration_tau, localAdaptintegration_k);
        _MagnoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
        _setInitPeriodCount();
    }

    inline void activateNormalizeParvoOutput_0_maxOutputValue(const bool normalizeParvoOutput_0_maxOutputValue)
    {
        _normalizeParvoOutput_0_maxOutputValue = normalizeParvoOutput_0_maxOutputValue;
    }

    inline void activateNormalizeMagnoOutput_0_maxOutputValue(const bool normalizeMagnoOutput_0_maxOutputValue)
    {
        _normalizeMagnoOutput_0_maxOutputValue = normalizeMagnoOutput_0_maxOutputValue;
    }

    inline void setMaxOutputValue(const float maxOutputValue)
    {
        _maxOutputValue = maxOutputValue;
    }

    void setColorMode(const bool desiredColorMode)
    {
        _useColorMode = desiredColorMode;
    }
    inline void setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0)
    {
        _colorEngine.setColorSaturation(saturateColors, colorSaturationValue);
    }
    inline const cv::ocl::oclMat &getLocalAdaptation() const
    {
        return _photoreceptorsPrefilter.getOutput();
    }
    inline const cv::ocl::oclMat &getPhotoreceptors() const
    {
        return _ParvoRetinaFilter.getPhotoreceptorsLPfilteringOutput();
    }

    inline const cv::ocl::oclMat &getHorizontalCells() const
    {
        return _ParvoRetinaFilter.getHorizontalCellsOutput();
    }
    inline bool areContoursProcessed()
    {
        return _useParvoOutput;
    }
    bool getParvoFoveaResponse(cv::ocl::oclMat &parvoFovealResponse);
    inline void activateContoursProcessing(const bool useParvoOutput)
    {
        _useParvoOutput = useParvoOutput;
    }

    const cv::ocl::oclMat &getContours();

    inline const cv::ocl::oclMat &getContoursON() const
    {
        return _ParvoRetinaFilter.getParvoON();
    }

    inline const cv::ocl::oclMat &getContoursOFF() const
    {
        return _ParvoRetinaFilter.getParvoOFF();
    }

    inline bool areMovingContoursProcessed()
    {
        return _useMagnoOutput;
    }

    inline void activateMovingContoursProcessing(const bool useMagnoOutput)
    {
        _useMagnoOutput = useMagnoOutput;
    }

    inline const cv::ocl::oclMat &getMovingContours() const
    {
        return _MagnoRetinaFilter.getOutput();
    }

    inline const cv::ocl::oclMat &getMovingContoursSaturated() const
    {
        return _MagnoRetinaFilter.getMagnoYsaturated();
    }

    inline const cv::ocl::oclMat &getMovingContoursON() const
    {
        return _MagnoRetinaFilter.getMagnoON();
    }

    inline const cv::ocl::oclMat &getMovingContoursOFF() const
    {
        return _MagnoRetinaFilter.getMagnoOFF();
    }

    inline const cv::ocl::oclMat &getRetinaParvoMagnoMappedOutput() const
    {
        return _retinaParvoMagnoMappedFrame;
    }

    inline const cv::ocl::oclMat &getParvoContoursChannel() const
    {
        return _colorEngine.getLuminance();
    }

    inline const cv::ocl::oclMat &getParvoChrominance() const
    {
        return _colorEngine.getChrominance();
    }
    inline const cv::ocl::oclMat &getColorOutput() const
    {
        return _colorEngine.getDemultiplexedColorFrame();
    }

    inline bool isColorMode()
    {
        return _useColorMode;
    }
    bool getColorMode()
    {
        return _useColorMode;
    }

    inline bool isInitTransitionDone()
    {
        if (_ellapsedFramesSinceLastReset < _globalTemporalConstant)
        {
            return false;
        }
        return true;
    }
    inline float getRetinaSamplingBackProjection(const float projectedRadiusLength)
    {
        return projectedRadiusLength;
    }

    inline unsigned int getInputNBrows()
    {
        return _photoreceptorsPrefilter.getNBrows();
    }

    inline unsigned int getInputNBcolumns()
    {
        return _photoreceptorsPrefilter.getNBcolumns();
    }

    inline unsigned int getInputNBpixels()
    {
        return _photoreceptorsPrefilter.getNBpixels();
    }

    inline unsigned int getOutputNBrows()
    {
        return _photoreceptorsPrefilter.getNBrows();
    }

    inline unsigned int getOutputNBcolumns()
    {
        return _photoreceptorsPrefilter.getNBcolumns();
    }

    inline unsigned int getOutputNBpixels()
    {
        return _photoreceptorsPrefilter.getNBpixels();
    }
private:
    bool _useParvoOutput;
    bool _useMagnoOutput;

    unsigned int _ellapsedFramesSinceLastReset;
    unsigned int _globalTemporalConstant;

    cv::ocl::oclMat _retinaParvoMagnoMappedFrame;
    BasicRetinaFilter _photoreceptorsPrefilter;
    ParvoRetinaFilter _ParvoRetinaFilter;
    MagnoRetinaFilter _MagnoRetinaFilter;
    RetinaColor       _colorEngine;

    bool _useMinimalMemoryForToneMappingONLY;
    bool _normalizeParvoOutput_0_maxOutputValue;
    bool _normalizeMagnoOutput_0_maxOutputValue;
    float _maxOutputValue;
    bool _useColorMode;

    void _setInitPeriodCount();
    void _processRetinaParvoMagnoMapping();
    void _runGrayToneMapping(const cv::ocl::oclMat &grayImageInput, cv::ocl::oclMat &grayImageOutput , const float PhotoreceptorsCompression = 0.6, const float ganglionCellsCompression = 0.6);
};

}  /* namespace ocl */
}  /* namespace bioinspired */
}  /* namespace cv */

#endif  /* HAVE_OPENCV_OCL */
#endif  /* __OCL_RETINA_HPP__ */