test_l0_smooth.cpp 3.98 KB
Newer Older
Zhou Chao's avatar
Zhou Chao committed
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  By downloading, copying, installing or using the software you agree to this license.
 *  If you do not agree to this license, do not download, install,
 *  copy or use the software.
 *
 *
 *  License Agreement
 *  For Open Source Computer Vision Library
 *  (3 - clause BSD License)
 *
 *  Redistribution and use in source and binary forms, with or without modification,
 *  are permitted provided that the following conditions are met :
 *
14
 *  * Redistributions of source code must retain the above copyright notice,
Zhou Chao's avatar
Zhou Chao committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 *  this list of conditions and the following disclaimer.
 *
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *  this list of conditions and the following disclaimer in the documentation
 *  and / or other materials provided with the distribution.
 *
 *  * Neither the names of the copyright holders nor the names of the contributors
 *  may be used to endorse or promote products derived from this software
 *  without specific prior written permission.
 *
 *  This software is provided by the copyright holders and contributors "as is" and
 *  any express or implied warranties, including, but not limited to, the implied
 *  warranties of merchantability and fitness for a particular purpose are disclaimed.
 *  In no event shall copyright holders or contributors be liable for any direct,
 *  indirect, incidental, special, exemplary, or consequential damages
 *  (including, but not limited to, procurement of substitute goods or services;
 *  loss of use, data, or profits; or business interruption) however caused
 *  and on any theory of liability, whether in contract, strict liability,
 *  or tort(including negligence or otherwise) arising in any way out of
 *  the use of this software, even if advised of the possibility of such damage.
 */

#include "test_precomp.hpp"

namespace cvtest
{

using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;

CV_ENUM(SrcTypes, CV_8UC1, CV_8UC3, CV_16UC1, CV_16UC3);
typedef tuple<Size, SrcTypes> L0SmoothParams;
typedef TestWithParam<L0SmoothParams> L0SmoothTest;

TEST(L0SmoothTest, SplatSurfaceAccuracy)
{
    RNG rnd(0);

    for (int i = 0; i < 3; i++)
    {
        Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));

        Scalar surfaceValue;
        int srcCn = 3;
        rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
        Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);

        double lambda = rnd.uniform(0.01, 0.05);
        double kappa  = rnd.uniform(1.5, 5.0);

        Mat res;
        l0Smooth(src, res, lambda, kappa);

        // When filtering a constant image we should get the same image:
        double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels();
        EXPECT_LE(normL1, 1.0/64);
    }
}

TEST_P(L0SmoothTest, MultiThreadReproducibility)
{
    if (cv::getNumberOfCPUs() == 1)
        return;

    double MAX_DIF = 10.0;
    double MAX_MEAN_DIF = 1.0 / 8.0;
    int loopsCount = 2;
    RNG rng(0);

    L0SmoothParams params = GetParam();
    Size size     = get<0>(params);
    int srcType   = get<1>(params);

    Mat src(size,srcType);
    if(src.depth()==CV_8U)
        randu(src, 0, 255);
    else if(src.depth()==CV_16U)
        randu(src, 0, 65535);
    else
        randu(src, -100000.0f, 100000.0f);


    for (int iter = 0; iter <= loopsCount; iter++)
    {
        double lambda = rng.uniform(0.01, 0.05);
        double kappa  = rng.uniform(1.5, 5.0);

        cv::setNumThreads(cv::getNumberOfCPUs());
        Mat resMultiThread;
        l0Smooth(src, resMultiThread, lambda, kappa);

        cv::setNumThreads(1);
        Mat resSingleThread;
        l0Smooth(src, resSingleThread, lambda, kappa);

        EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
        EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF*src.total()*src.channels());
    }
}
INSTANTIATE_TEST_CASE_P(FullSet, L0SmoothTest,Combine(Values(szODD, szQVGA), SrcTypes::all()));

}