reconstruct.cpp 6.59 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2009, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 */

#include "precomp.hpp"

#if CERES_FOUND

// Eigen
#include <Eigen/Core>

// OpenCV
#include <opencv2/sfm.hpp>

#include <iostream>

using namespace cv;
using namespace cv::sfm;
using namespace std;

namespace cv
{
namespace sfm
{

  template<class T>
  void
  reconstruct_(const T &input, OutputArray Rs, OutputArray Ts, InputOutputArray K, OutputArray points3d, const bool refinement=true)
  {
    // Initial reconstruction
    const int keyframe1 = 1, keyframe2 = 2;
    const int select_keyframes = 1; // enable automatic keyframes selection
    const int verbosity_level = -1; // mute libmv logs

    // Refinement parameters
    const int refine_intrinsics = ( !refinement ) ? 0 :
        SFM_REFINE_FOCAL_LENGTH | SFM_REFINE_PRINCIPAL_POINT | SFM_REFINE_RADIAL_DISTORTION_K1 | SFM_REFINE_RADIAL_DISTORTION_K2;

    // Camera data
    Matx33d Ka = K.getMat();
    const double focal_length = Ka(0,0);
    const double principal_x = Ka(0,2), principal_y = Ka(1,2), k1 = 0, k2 = 0, k3 = 0;

    // Set reconstruction options
    libmv_ReconstructionOptions reconstruction_options(keyframe1, keyframe2, refine_intrinsics, select_keyframes, verbosity_level);

    libmv_CameraIntrinsicsOptions camera_instrinsic_options =
      libmv_CameraIntrinsicsOptions(SFM_DISTORTION_MODEL_POLYNOMIAL,
                                    focal_length, principal_x, principal_y,
                                    k1, k2, k3);

    //-- Instantiate reconstruction pipeline
    Ptr<BaseSFM> reconstruction =
      SFMLibmvEuclideanReconstruction::create(camera_instrinsic_options, reconstruction_options);

    //-- Run reconstruction pipeline
    reconstruction->run(input, K, Rs, Ts, points3d);

  }


  //  Reconstruction function for API
  void
  reconstruct(InputArrayOfArrays points2d, OutputArray Ps, OutputArray points3d, InputOutputArray K,
              bool is_projective)
  {
    const int nviews = points2d.total();
    CV_Assert( nviews >= 2 );

    // OpenCV data types
    std::vector<Mat> pts2d;
    points2d.getMatVector(pts2d);
    const int depth = pts2d[0].depth();

    Matx33d Ka = K.getMat();

    // Projective reconstruction

    if (is_projective)
    {

      if ( nviews == 2 )
      {
        // Get Projection matrices
        Matx33d F;
        Matx34d P, Pp;

        normalizedEightPointSolver(pts2d[0], pts2d[1], F);
        projectionsFromFundamental(F, P, Pp);
        Ps.create(2, 1, depth);
        Mat(P).copyTo(Ps.getMatRef(0));
        Mat(Pp).copyTo(Ps.getMatRef(1));

        // Triangulate and find 3D points using inliers
        triangulatePoints(points2d, Ps, points3d);
      }
      else
      {
        std::vector<Mat> Rs, Ts;
        reconstruct(points2d, Rs, Ts, Ka, points3d, is_projective);

        // From Rs and Ts, extract Ps
        const int nviews = Rs.size();
        Ps.create(nviews, 1, depth);

        Matx34d P;
        for (size_t i = 0; i < nviews; ++i)
        {
          projectionFromKRt(Ka, Rs[i], Vec3d(Ts[i]), P);
          Mat(P).copyTo(Ps.getMatRef(i));
        }

        Mat(Ka).copyTo(K.getMat());
      }

    }


    // Affine reconstruction

    else
    {
      // TODO: implement me
    }

  }


  void
  reconstruct(InputArrayOfArrays points2d, OutputArray Rs, OutputArray Ts, InputOutputArray K,
              OutputArray points3d, bool is_projective)
  {
    const int nviews = points2d.total();
    CV_Assert( nviews >= 2 );


    // Projective reconstruction

    if (is_projective)
    {

      // calls simple pipeline
      reconstruct_(points2d, Rs, Ts, K, points3d);

    }

    // Affine reconstruction

    else
    {
      // TODO: implement me
    }

  }


  void
  reconstruct(const std::vector<std::string> images, OutputArray Ps, OutputArray points3d,
              InputOutputArray K, bool is_projective)
  {
    const int nviews = static_cast<int>(images.size());
    CV_Assert( nviews >= 2 );

    Matx33d Ka = K.getMat();
    const int depth = Mat(Ka).depth();

    // Projective reconstruction

    if ( is_projective )
    {
      std::vector<Mat> Rs, Ts;
      reconstruct(images, Rs, Ts, Ka, points3d, is_projective);

      // From Rs and Ts, extract Ps

      const int nviews_est = Rs.size();
      Ps.create(nviews_est, 1, depth);

      Matx34d P;
      for (size_t i = 0; i < nviews_est; ++i)
      {
        projectionFromKRt(Ka, Rs[i], Vec3d(Ts[i]), P);
        Mat(P).copyTo(Ps.getMatRef(i));
      }

      Mat(Ka).copyTo(K.getMat());
      }


    // Affine reconstruction

    else
    {
      // TODO: implement me
    }

  }


  void
  reconstruct(const std::vector<std::string> images, OutputArray Rs, OutputArray Ts,
              InputOutputArray K, OutputArray points3d, bool is_projective)
  {
    const int nviews = static_cast<int>(images.size());
    CV_Assert( nviews >= 2 );

    // Projective reconstruction

    if ( is_projective )
    {
      reconstruct_(images, Rs, Ts, K, points3d, false);
    }


    // Affine reconstruction

    else
    {
      // TODO: implement me
    }

  }

} // namespace sfm
} // namespace cv

#endif /* HAVE_CERES */