templatebuffer.hpp 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
**  Creation - enhancement process 2007-2011
**      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
**                          License Agreement
**               For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
**               For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
**    this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
**    this list of conditions and the following disclaimer in the documentation
**    and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
**    derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/

#ifndef __TEMPLATEBUFFER_HPP__
#define __TEMPLATEBUFFER_HPP__

#include <valarray>
#include <cstdlib>
#include <iostream>
#include <cmath>


//#define __TEMPLATEBUFFERDEBUG //define TEMPLATEBUFFERDEBUG in order to display debug information

namespace cv
{
namespace bioinspired
{
//// If a parallelization method is available then, you should define MAKE_PARALLEL, in the other case, the classical serial code will be used
#define MAKE_PARALLEL
// ==> then include required includes
#ifdef MAKE_PARALLEL

// ==> declare usefull generic tools
template <class type>
class Parallel_clipBufferValues: public cv::ParallelLoopBody
{
private:
    type *bufferToClip;
    type minValue, maxValue;

public:
    Parallel_clipBufferValues(type* bufferToProcess, const type min, const type max)
        : bufferToClip(bufferToProcess), minValue(min), maxValue(max) { }

    virtual void operator()( const cv::Range &r ) const {
        register type *inputOutputBufferPTR=bufferToClip+r.start;
        for (register int jf = r.start; jf != r.end; ++jf, ++inputOutputBufferPTR)
        {
            if (*inputOutputBufferPTR>maxValue)
                *inputOutputBufferPTR=maxValue;
            else if (*inputOutputBufferPTR<minValue)
                *inputOutputBufferPTR=minValue;
        }
    }
};
#endif

    /**
    * @class TemplateBuffer
    * @brief this class is a simple template memory buffer which contains basic functions to get information on or normalize the buffer content
    * note that thanks to the parent STL template class "valarray", it is possible to perform easily operations on the full array such as addition, product etc.
    * @author Alexandre BENOIT (benoit.alexandre.vision@gmail.com), helped by Gelu IONESCU (gelu.ionescu@lis.inpg.fr)
    * creation date: september 2007
    */
    template <class type> class TemplateBuffer : public std::valarray<type>
    {
    public:

        /**
        * constructor for monodimensional array
        * @param dim: the size of the vector
        */
        TemplateBuffer(const size_t dim=0)
            : std::valarray<type>((type)0, dim)
        {
            _NBrows=1;
            _NBcolumns=dim;
            _NBdepths=1;
            _NBpixels=dim;
            _doubleNBpixels=2*dim;
        }

        /**
        * constructor by copy for monodimensional array
        * @param pVal: the pointer to a buffer to copy
        * @param dim: the size of the vector
        */
        TemplateBuffer(const type* pVal, const size_t dim)
            : std::valarray<type>(pVal, dim)
        {
            _NBrows=1;
            _NBcolumns=dim;
            _NBdepths=1;
            _NBpixels=dim;
            _doubleNBpixels=2*dim;
        }

        /**
        * constructor for bidimensional array
        * @param dimRows: the size of the vector
        * @param dimColumns: the size of the vector
        * @param depth: the number of layers of the buffer in its third dimension (3 of color images, 1 for gray images.
        */
        TemplateBuffer(const size_t dimRows, const size_t dimColumns, const size_t depth=1)
            : std::valarray<type>((type)0, dimRows*dimColumns*depth)
        {
#ifdef TEMPLATEBUFFERDEBUG
            std::cout<<"TemplateBuffer::TemplateBuffer: new buffer, size="<<dimRows<<", "<<dimColumns<<", "<<depth<<"valarraySize="<<this->size()<<std::endl;
#endif
            _NBrows=dimRows;
            _NBcolumns=dimColumns;
            _NBdepths=depth;
            _NBpixels=dimRows*dimColumns;
            _doubleNBpixels=2*dimRows*dimColumns;
            //_createTableIndex();
#ifdef TEMPLATEBUFFERDEBUG
            std::cout<<"TemplateBuffer::TemplateBuffer: construction successful"<<std::endl;
#endif

        }

        /**
        * copy constructor
        * @param toCopy
        * @return thenconstructed instance
        *emplateBuffer(const TemplateBuffer &toCopy)
        :_NBrows(toCopy.getNBrows()),_NBcolumns(toCopy.getNBcolumns()),_NBdepths(toCopy.getNBdephs()), _NBpixels(toCopy.getNBpixels()), _doubleNBpixels(toCopy.getNBpixels()*2)
        //std::valarray<type>(toCopy)
        {
        memcpy(Buffer(), toCopy.Buffer(), this->size());
        }*/
        /**
        * destructor
        */
        virtual ~TemplateBuffer()
        {
#ifdef TEMPLATEBUFFERDEBUG
            std::cout<<"~TemplateBuffer"<<std::endl;
#endif
        }

        /**
        * delete the buffer content (set zeros)
        */
        inline void setZero() { std::valarray<type>::operator=(0); } //memset(Buffer(), 0, sizeof(type)*_NBpixels); }

        /**
        * @return the numbers of rows (height) of the images used by the object
        */
        inline unsigned int getNBrows() { return (unsigned int)_NBrows; }

        /**
        * @return the numbers of columns (width) of the images used by the object
        */
        inline unsigned int getNBcolumns() { return (unsigned int)_NBcolumns; }

        /**
        * @return the numbers of pixels (width*height) of the images used by the object
        */
        inline unsigned int getNBpixels() { return (unsigned int)_NBpixels; }

        /**
        * @return the numbers of pixels (width*height) of the images used by the object
        */
        inline unsigned int getDoubleNBpixels() { return (unsigned int)_doubleNBpixels; }

        /**
        * @return the numbers of depths (3rd dimension: 1 for gray images, 3 for rgb images) of the images used by the object
        */
        inline unsigned int getDepthSize() { return (unsigned int)_NBdepths; }

        /**
        * resize the buffer and recompute table index etc.
        */
        void resizeBuffer(const size_t dimRows, const size_t dimColumns, const size_t depth=1)
        {
            this->resize(dimRows*dimColumns*depth);
            _NBrows=dimRows;
            _NBcolumns=dimColumns;
            _NBdepths=depth;
            _NBpixels=dimRows*dimColumns;
            _doubleNBpixels=2*dimRows*dimColumns;
        }

        inline TemplateBuffer<type> & operator=(const std::valarray<type> &b)
        {
            //std::cout<<"TemplateBuffer<type> & operator= affect vector: "<<std::endl;
            std::valarray<type>::operator=(b);
            return *this;
        }

        inline TemplateBuffer<type> & operator=(const type &b)
        {
            //std::cout<<"TemplateBuffer<type> & operator= affect value: "<<b<<std::endl;
            std::valarray<type>::operator=(b);
            return *this;
        }

        /*  inline const type  &operator[](const unsigned int &b)
        {
        return (*this)[b];
        }
        */
        /**
        * @return the buffer adress in non const mode
        */
        inline type*    Buffer()            {    return &(*this)[0];    }

        ///////////////////////////////////////////////////////
        // Standard Image manipulation functions

        /**
        * standard 0 to 255 image normalization function
        * @param inputOutputBuffer: the image to be normalized (rewrites the input), if no parameter, then, the built in buffer reachable by getOutput() function is normalized
        * @param nbPixels: specifies the number of pixel on which the normalization should be performed, if 0, then all pixels specified in the constructor are processed
        * @param maxOutputValue: the maximum output value
        */
        static void normalizeGrayOutput_0_maxOutputValue(type *inputOutputBuffer, const size_t nbPixels, const type maxOutputValue=(type)255.0);

        /**
        * standard 0 to 255 image normalization function
        * @param inputOutputBuffer: the image to be normalized (rewrites the input), if no parameter, then, the built in buffer reachable by getOutput() function is normalized
        * @param nbPixels: specifies the number of pixel on which the normalization should be performed, if 0, then all pixels specified in the constructor are processed
        * @param maxOutputValue: the maximum output value
        */
        void normalizeGrayOutput_0_maxOutputValue(const type maxOutputValue=(type)255.0) { normalizeGrayOutput_0_maxOutputValue(this->Buffer(), this->size(), maxOutputValue); }

        /**
        * sigmoide image normalization function (saturates min and max values)
        * @param meanValue: specifies the mean value of th pixels to be processed
        * @param sensitivity: strenght of the sigmoide
        * @param inputPicture: the image to be normalized if no parameter, then, the built in buffer reachable by getOutput() function is normalized
        * @param outputBuffer: the ouput buffer on which the result is writed, if no parameter, then, the built in buffer reachable by getOutput() function is normalized
        * @param maxOutputValue: the maximum output value
        */
        static void normalizeGrayOutputCentredSigmoide(const type meanValue, const type sensitivity, const type maxOutputValue, type *inputPicture, type *outputBuffer, const unsigned int nbPixels);

        /**
        * sigmoide image normalization function on the current buffer (saturates min and max values)
        * @param meanValue: specifies the mean value of th pixels to be processed
        * @param sensitivity: strenght of the sigmoide
        * @param maxOutputValue: the maximum output value
        */
        inline void normalizeGrayOutputCentredSigmoide(const type meanValue=(type)0.0, const type sensitivity=(type)2.0, const type maxOutputValue=(type)255.0) {  (void)maxOutputValue; normalizeGrayOutputCentredSigmoide(meanValue, sensitivity, 255.0, this->Buffer(), this->Buffer(), this->getNBpixels()); }

        /**
        * sigmoide image normalization function (saturates min and max values), in this function, the sigmoide is centered on low values (high saturation of the medium and high values
        * @param inputPicture: the image to be normalized if no parameter, then, the built in buffer reachable by getOutput() function is normalized
        * @param outputBuffer: the ouput buffer on which the result is writed, if no parameter, then, the built in buffer reachable by getOutput() function is normalized
        * @param sensitivity: strenght of the sigmoide
        * @param maxOutputValue: the maximum output value
        */
        void normalizeGrayOutputNearZeroCentreredSigmoide(type *inputPicture=(type*)NULL, type *outputBuffer=(type*)NULL, const type sensitivity=(type)40, const type maxOutputValue=(type)255.0);

        /**
        * center and reduct the image (image-mean)/std
        * @param inputOutputBuffer: the image to be normalized if no parameter, the result is rewrited on it
        */
        void centerReductImageLuminance(type *inputOutputBuffer=(type*)NULL);

        /**
        * @return standard deviation of the buffer
        */
        double getStandardDeviation()
        {
            double standardDeviation=0;
            double meanValue=getMean();

            type *bufferPTR=Buffer();
            for (unsigned int i=0;i<this->size();++i)
            {
                double diff=(*(bufferPTR++)-meanValue);
                standardDeviation+=diff*diff;
            }
            return std::sqrt(standardDeviation/this->size());
        }

        /**
        * Clip buffer histogram
        * @param minRatio: the minimum ratio of the lower pixel values, range=[0,1] and lower than maxRatio
        * @param maxRatio: the aximum ratio of the higher pixel values, range=[0,1] and higher than minRatio
        */
        void clipHistogram(double minRatio, double maxRatio, double maxOutputValue)
        {

            if (minRatio>=maxRatio)
            {
                std::cerr<<"TemplateBuffer::clipHistogram: minRatio must be inferior to maxRatio, buffer unchanged"<<std::endl;
                return;
            }

            /*    minRatio=min(max(minRatio, 1.0),0.0);
            maxRatio=max(max(maxRatio, 0.0),1.0);
            */

            // find the pixel value just above the threshold
            const double maxThreshold=this->max()*maxRatio;
            const double minThreshold=(this->max()-this->min())*minRatio+this->min();

            type *bufferPTR=this->Buffer();

            double deltaH=maxThreshold;
            double deltaL=maxThreshold;

            double updatedHighValue=maxThreshold;
            double updatedLowValue=maxThreshold;

            for (unsigned int i=0;i<this->size();++i)
            {
                double curentValue=(double)*(bufferPTR++);

                // updating "closest to the high threshold" pixel value
                double highValueTest=maxThreshold-curentValue;
                if (highValueTest>0)
                {
                    if (deltaH>highValueTest)
                    {
                        deltaH=highValueTest;
                        updatedHighValue=curentValue;
                    }
                }

                // updating "closest to the low threshold" pixel value
                double lowValueTest=curentValue-minThreshold;
                if (lowValueTest>0)
                {
                    if (deltaL>lowValueTest)
                    {
                        deltaL=lowValueTest;
                        updatedLowValue=curentValue;
                    }
                }
            }

            std::cout<<"Tdebug"<<std::endl;
            std::cout<<"deltaL="<<deltaL<<", deltaH="<<deltaH<<std::endl;
            std::cout<<"this->max()"<<this->max()<<"maxThreshold="<<maxThreshold<<"updatedHighValue="<<updatedHighValue<<std::endl;
            std::cout<<"this->min()"<<this->min()<<"minThreshold="<<minThreshold<<"updatedLowValue="<<updatedLowValue<<std::endl;
            // clipping values outside than the updated thresholds
            bufferPTR=this->Buffer();
#ifdef MAKE_PARALLEL // call the TemplateBuffer multitreaded clipping method
            parallel_for_(cv::Range(0,this->size()), Parallel_clipBufferValues<type>(bufferPTR, updatedLowValue, updatedHighValue));
#else

            for (unsigned int i=0;i<this->size();++i, ++bufferPTR)
            {
                if (*bufferPTR<updatedLowValue)
                    *bufferPTR=updatedLowValue;
                else if (*bufferPTR>updatedHighValue)
                    *bufferPTR=updatedHighValue;
            }
#endif
            normalizeGrayOutput_0_maxOutputValue(this->Buffer(), this->size(), maxOutputValue);

        }

        /**
        * @return the mean value of the vector
        */
        inline double getMean() { return this->sum()/this->size(); }

    protected:
        size_t _NBrows;
        size_t _NBcolumns;
        size_t _NBdepths;
        size_t _NBpixels;
        size_t _doubleNBpixels;
        // utilities
        static type _abs(const type x);

    };

    ///////////////////////////////////////////////////////////////////////
    /// normalize output between 0 and 255, can be applied on images of different size that the declared size if nbPixels parameters is setted up;
    template <class type>
    void TemplateBuffer<type>::normalizeGrayOutput_0_maxOutputValue(type *inputOutputBuffer, const size_t processedPixels, const type maxOutputValue)
    {
        type maxValue=inputOutputBuffer[0], minValue=inputOutputBuffer[0];

        // get the min and max value
        register type *inputOutputBufferPTR=inputOutputBuffer;
        for (register size_t j = 0; j<processedPixels; ++j)
        {
            type pixValue = *(inputOutputBufferPTR++);
            if (maxValue < pixValue)
                maxValue = pixValue;
            else if (minValue > pixValue)
                minValue = pixValue;
        }
        // change the range of the data to 0->255

        type factor = maxOutputValue/(maxValue-minValue);
        type offset = (type)(-minValue*factor);

        inputOutputBufferPTR=inputOutputBuffer;
        for (register size_t j = 0; j < processedPixels; ++j, ++inputOutputBufferPTR)
            *inputOutputBufferPTR=*(inputOutputBufferPTR)*factor+offset;

    }
    // normalize data with a sigmoide close to 0 (saturates values for those superior to 0)
    template <class type>
    void TemplateBuffer<type>::normalizeGrayOutputNearZeroCentreredSigmoide(type *inputBuffer, type *outputBuffer, const type sensitivity, const type maxOutputValue)
    {
        if (inputBuffer==NULL)
            inputBuffer=Buffer();
        if (outputBuffer==NULL)
            outputBuffer=Buffer();

        type X0cube=sensitivity*sensitivity*sensitivity;

        register type *inputBufferPTR=inputBuffer;
        register type *outputBufferPTR=outputBuffer;

        for (register size_t j = 0; j < _NBpixels; ++j, ++inputBufferPTR)
        {

            type currentCubeLuminance=*inputBufferPTR**inputBufferPTR**inputBufferPTR;
            *(outputBufferPTR++)=maxOutputValue*currentCubeLuminance/(currentCubeLuminance+X0cube);
        }
    }

    // normalize and adjust luminance with a centered to 128 sigmode
    template <class type>
    void TemplateBuffer<type>::normalizeGrayOutputCentredSigmoide(const type meanValue, const type sensitivity, const type maxOutputValue, type *inputBuffer, type *outputBuffer, const unsigned int nbPixels)
    {

        if (sensitivity==1.0)
        {
            std::cerr<<"TemplateBuffer::TemplateBuffer<type>::normalizeGrayOutputCentredSigmoide error: 2nd parameter (sensitivity) must not equal 0, copying original data..."<<std::endl;
            memcpy(outputBuffer, inputBuffer, sizeof(type)*nbPixels);
            return;
        }

        type X0=maxOutputValue/(sensitivity-(type)1.0);

        register type *inputBufferPTR=inputBuffer;
        register type *outputBufferPTR=outputBuffer;

        for (register size_t j = 0; j < nbPixels; ++j, ++inputBufferPTR)
            *(outputBufferPTR++)=(meanValue+(meanValue+X0)*(*(inputBufferPTR)-meanValue)/(_abs(*(inputBufferPTR)-meanValue)+X0));

    }

    // center and reduct the image (image-mean)/std
    template <class type>
    void TemplateBuffer<type>::centerReductImageLuminance(type *inputOutputBuffer)
    {
        // if outputBuffer unsassigned, the rewrite the buffer
        if (inputOutputBuffer==NULL)
            inputOutputBuffer=Buffer();
        type meanValue=0, stdValue=0;

        // compute mean value
        for (register size_t j = 0; j < _NBpixels; ++j)
            meanValue+=inputOutputBuffer[j];
        meanValue/=((type)_NBpixels);

        // compute std value
        register type *inputOutputBufferPTR=inputOutputBuffer;
        for (size_t index=0;index<_NBpixels;++index)
        {
            type inputMinusMean=*(inputOutputBufferPTR++)-meanValue;
            stdValue+=inputMinusMean*inputMinusMean;
        }

        stdValue=std::sqrt(stdValue/((type)_NBpixels));
        // adjust luminance in regard of mean and std value;
        inputOutputBufferPTR=inputOutputBuffer;
        for (size_t index=0;index<_NBpixels;++index, ++inputOutputBufferPTR)
            *inputOutputBufferPTR=(*(inputOutputBufferPTR)-meanValue)/stdValue;
    }


    template <class type>
    type TemplateBuffer<type>::_abs(const type x)
    {

        if (x>0)
            return x;
        else
            return -x;
    }

    template < >
    inline int TemplateBuffer<int>::_abs(const int x)
    {
        return std::abs(x);
    }
    template < >
    inline double TemplateBuffer<double>::_abs(const double x)
    {
        return std::fabs(x);
    }

    template < >
    inline float TemplateBuffer<float>::_abs(const float x)
    {
        return std::fabs(x);
    }

}// end of namespace bioinspired
}// end of namespace cv
#endif