optical_flow_evaluation.cpp 14.2 KB
Newer Older
1 2 3
#include "opencv2/highgui.hpp"
#include "opencv2/video.hpp"
#include "opencv2/optflow.hpp"
4
#include "opencv2/core/ocl.hpp"
5
#include <fstream>
Bleach666's avatar
Bleach666 committed
6
#include <limits>
7 8 9 10 11 12 13 14

using namespace std;
using namespace cv;
using namespace optflow;

const String keys = "{help h usage ? |      | print this message   }"
        "{@image1        |      | image1               }"
        "{@image2        |      | image2               }"
Vladislav Samsonov's avatar
Vladislav Samsonov committed
15
        "{@algorithm     |      | [farneback, simpleflow, tvl1, deepflow, sparsetodenseflow, pcaflow, DISflow_ultrafast, DISflow_fast, DISflow_medium] }"
16 17 18
        "{@groundtruth   |      | path to the .flo file  (optional), Middlebury format }"
        "{m measure      |endpoint| error measure - [endpoint or angular] }"
        "{r region       |all   | region to compute stats about [all, discontinuities, untextured] }"
19
        "{d display      |      | display additional info images (pauses program execution) }"
20 21
        "{g gpu          |      | use OpenCL}"
        "{prior          |      | path to a prior file for PCAFlow}";
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

inline bool isFlowCorrect( const Point2f u )
{
    return !cvIsNaN(u.x) && !cvIsNaN(u.y) && (fabs(u.x) < 1e9) && (fabs(u.y) < 1e9);
}
inline bool isFlowCorrect( const Point3f u )
{
    return !cvIsNaN(u.x) && !cvIsNaN(u.y) && !cvIsNaN(u.z) && (fabs(u.x) < 1e9) && (fabs(u.y) < 1e9)
            && (fabs(u.z) < 1e9);
}
static Mat endpointError( const Mat_<Point2f>& flow1, const Mat_<Point2f>& flow2 )
{
    Mat result(flow1.size(), CV_32FC1);
    for ( int i = 0; i < flow1.rows; ++i )
    {
        for ( int j = 0; j < flow1.cols; ++j )
        {
            const Point2f u1 = flow1(i, j);
            const Point2f u2 = flow2(i, j);

            if ( isFlowCorrect(u1) && isFlowCorrect(u2) )
            {
                const Point2f diff = u1 - u2;
                result.at<float>(i, j) = sqrt((float)diff.ddot(diff)); //distance
            } else
Bleach666's avatar
Bleach666 committed
47
                result.at<float>(i, j) = std::numeric_limits<float>::quiet_NaN();
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        }
    }
    return result;
}
static Mat angularError( const Mat_<Point2f>& flow1, const Mat_<Point2f>& flow2 )
{
    Mat result(flow1.size(), CV_32FC1);

    for ( int i = 0; i < flow1.rows; ++i )
    {
        for ( int j = 0; j < flow1.cols; ++j )
        {
            const Point2f u1_2d = flow1(i, j);
            const Point2f u2_2d = flow2(i, j);
            const Point3f u1(u1_2d.x, u1_2d.y, 1);
            const Point3f u2(u2_2d.x, u2_2d.y, 1);

            if ( isFlowCorrect(u1) && isFlowCorrect(u2) )
                result.at<float>(i, j) = acos((float)(u1.ddot(u2) / norm(u1) * norm(u2)));
            else
Bleach666's avatar
Bleach666 committed
68
                result.at<float>(i, j) = std::numeric_limits<float>::quiet_NaN();
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        }
    }
    return result;
}
// what fraction of pixels have errors higher than given threshold?
static float stat_RX( Mat errors, float threshold, Mat mask )
{
    CV_Assert(errors.size() == mask.size());
    CV_Assert(mask.depth() == CV_8U);

    int count = 0, all = 0;
    for ( int i = 0; i < errors.rows; ++i )
    {
        for ( int j = 0; j < errors.cols; ++j )
        {
            if ( mask.at<char>(i, j) != 0 )
            {
                ++all;
                if ( errors.at<float>(i, j) > threshold )
                    ++count;
            }
        }
    }
    return (float)count / all;
}
static float stat_AX( Mat hist, int cutoff_count, float max_value )
{
    int counter = 0;
    int bin = 0;
    int bin_count = hist.rows;
    while ( bin < bin_count && counter < cutoff_count )
    {
        counter += (int) hist.at<float>(bin, 0);
        ++bin;
    }
    return (float) bin / bin_count * max_value;
}
static void calculateStats( Mat errors, Mat mask = Mat(), bool display_images = false )
{
    float R_thresholds[] = { 0.5f, 1.f, 2.f, 5.f, 10.f };
    float A_thresholds[] = { 0.5f, 0.75f, 0.95f };
    if ( mask.empty() )
        mask = Mat::ones(errors.size(), CV_8U);
    CV_Assert(errors.size() == mask.size());
    CV_Assert(mask.depth() == CV_8U);

    //displaying the mask
    if(display_images)
    {
        namedWindow( "Region mask", WINDOW_AUTOSIZE );
        imshow( "Region mask", mask );
    }

    //mean and std computation
    Scalar s_mean, s_std;
    float mean, std;
    meanStdDev(errors, s_mean, s_std, mask);
    mean = (float)s_mean[0];
    std = (float)s_std[0];
    printf("Average: %.2f\nStandard deviation: %.2f\n", mean, std);

    //RX stats - displayed in percent
    float R;
    int R_thresholds_count = sizeof(R_thresholds) / sizeof(float);
    for ( int i = 0; i < R_thresholds_count; ++i )
    {
        R = stat_RX(errors, R_thresholds[i], mask);
        printf("R%.1f: %.2f%%\n", R_thresholds[i], R * 100);
    }

    //AX stats
    double max_value;
    minMaxLoc(errors, NULL, &max_value, NULL, NULL, mask);

    Mat hist;
    const int n_images = 1;
    const int channels[] = { 0 };
    const int n_dimensions = 1;
    const int hist_bins[] = { 1024 };
    const float iranges[] = { 0, (float) max_value };
    const float* ranges[] = { iranges };
    const bool uniform = true;
    const bool accumulate = false;
    calcHist(&errors, n_images, channels, mask, hist, n_dimensions, hist_bins, ranges, uniform,
            accumulate);
    int all_pixels = countNonZero(mask);
    int cutoff_count;
    float A;
    int A_thresholds_count = sizeof(A_thresholds) / sizeof(float);
    for ( int i = 0; i < A_thresholds_count; ++i )
    {
        cutoff_count = (int) (floor(A_thresholds[i] * all_pixels + 0.5f));
        A = stat_AX(hist, cutoff_count, (float) max_value);
        printf("A%.2f: %.2f\n", A_thresholds[i], A);
    }
}

static Mat flowToDisplay(const Mat flow)
{
    Mat flow_split[2];
    Mat magnitude, angle;
    Mat hsv_split[3], hsv, rgb;
    split(flow, flow_split);
    cartToPolar(flow_split[0], flow_split[1], magnitude, angle, true);
    normalize(magnitude, magnitude, 0, 1, NORM_MINMAX);
    hsv_split[0] = angle; // already in degrees - no normalization needed
    hsv_split[1] = Mat::ones(angle.size(), angle.type());
    hsv_split[2] = magnitude;
    merge(hsv_split, 3, hsv);
    cvtColor(hsv, rgb, COLOR_HSV2BGR);
    return rgb;
}

int main( int argc, char** argv )
{
    CommandLineParser parser(argc, argv, keys);
    parser.about("OpenCV optical flow evaluation app");
    if ( parser.has("help") || argc < 4 )
    {
        parser.printMessage();
        printf("EXAMPLES:\n");
        printf("./example_optflow_optical_flow_evaluation im1.png im2.png farneback -d \n");
        printf("\t - compute flow field between im1 and im2 with farneback's method and display it");
        printf("./example_optflow_optical_flow_evaluation im1.png im2.png simpleflow groundtruth.flo \n");
        printf("\t - compute error statistics given the groundtruth; all pixels, endpoint error measure");
        printf("./example_optflow_optical_flow_evaluation im1.png im2.png farneback groundtruth.flo -m=angular -r=untextured \n");
        printf("\t - as before, but with changed error measure and stats computed only about \"untextured\" areas");
        printf("\n\n Flow file format description: http://vision.middlebury.edu/flow/code/flow-code/README.txt\n\n");
        return 0;
    }
    String i1_path = parser.get<String>(0);
    String i2_path = parser.get<String>(1);
    String method = parser.get<String>(2);
    String groundtruth_path = parser.get<String>(3);
    String error_measure = parser.get<String>("measure");
    String region = parser.get<String>("region");
    bool display_images = parser.has("display");
206
    const bool useGpu = parser.has("gpu");
207 208 209 210 211 212 213

    if ( !parser.check() )
    {
        parser.printErrors();
        return 0;
    }

214 215 216
    cv::ocl::setUseOpenCL(useGpu);
    printf("OpenCL Enabled: %u\n", useGpu && cv::ocl::haveOpenCL());

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    Mat i1, i2;
    Mat_<Point2f> flow, ground_truth;
    Mat computed_errors;
    i1 = imread(i1_path, 1);
    i2 = imread(i2_path, 1);

    if ( !i1.data || !i2.data )
    {
        printf("No image data \n");
        return -1;
    }
    if ( i1.size() != i2.size() || i1.channels() != i2.channels() )
    {
        printf("Dimension mismatch between input images\n");
        return -1;
    }
    // 8-bit images expected by all algorithms
    if ( i1.depth() != CV_8U )
        i1.convertTo(i1, CV_8U);
    if ( i2.depth() != CV_8U )
        i2.convertTo(i2, CV_8U);

239
    if ( (method == "farneback" || method == "tvl1" || method == "deepflow" || method == "DISflow_ultrafast" || method == "DISflow_fast" || method == "DISflow_medium") && i1.channels() == 3 )
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    {   // 1-channel images are expected
        cvtColor(i1, i1, COLOR_BGR2GRAY);
        cvtColor(i2, i2, COLOR_BGR2GRAY);
    } else if ( method == "simpleflow" && i1.channels() == 1 )
    {   // 3-channel images expected
        cvtColor(i1, i1, COLOR_GRAY2BGR);
        cvtColor(i2, i2, COLOR_GRAY2BGR);
    }

    flow = Mat(i1.size[0], i1.size[1], CV_32FC2);
    Ptr<DenseOpticalFlow> algorithm;

    if ( method == "farneback" )
        algorithm = createOptFlow_Farneback();
    else if ( method == "simpleflow" )
        algorithm = createOptFlow_SimpleFlow();
    else if ( method == "tvl1" )
        algorithm = createOptFlow_DualTVL1();
258 259
    else if ( method == "deepflow" )
        algorithm = createOptFlow_DeepFlow();
260 261
    else if ( method == "sparsetodenseflow" )
        algorithm = createOptFlow_SparseToDense();
262 263 264 265 266 267 268 269 270
    else if ( method == "pcaflow" ) {
        if ( parser.has("prior") ) {
            String prior = parser.get<String>("prior");
            printf("Using prior file: %s\n", prior.c_str());
            algorithm = makePtr<OpticalFlowPCAFlow>(makePtr<PCAPrior>(prior.c_str()));
        }
        else
            algorithm = createOptFlow_PCAFlow();
    }
271 272 273 274 275 276
    else if ( method == "DISflow_ultrafast" )
        algorithm = createOptFlow_DIS(DISOpticalFlow::PRESET_ULTRAFAST);
    else if (method == "DISflow_fast")
        algorithm = createOptFlow_DIS(DISOpticalFlow::PRESET_FAST);
    else if (method == "DISflow_medium")
        algorithm = createOptFlow_DIS(DISOpticalFlow::PRESET_MEDIUM);
277 278 279 280 281 282 283 284 285
    else
    {
        printf("Wrong method!\n");
        parser.printMessage();
        return -1;
    }

    double startTick, time;
    startTick = (double) getTickCount(); // measure time
286 287 288 289 290 291

    if (useGpu)
        algorithm->calc(i1, i2, flow.getUMat(ACCESS_RW));
    else
        algorithm->calc(i1, i2, flow);

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    time = ((double) getTickCount() - startTick) / getTickFrequency();
    printf("\nTime [s]: %.3f\n", time);
    if(display_images)
    {
        Mat flow_image = flowToDisplay(flow);
        namedWindow( "Computed flow", WINDOW_AUTOSIZE );
        imshow( "Computed flow", flow_image );
    }

    if ( !groundtruth_path.empty() )
    { // compare to ground truth
        ground_truth = optflow::readOpticalFlow(groundtruth_path);
        if ( flow.size() != ground_truth.size() || flow.channels() != 2
                || ground_truth.channels() != 2 )
        {
            printf("Dimension mismatch between the computed flow and the provided ground truth\n");
            return -1;
        }
        if ( error_measure == "endpoint" )
            computed_errors = endpointError(flow, ground_truth);
        else if ( error_measure == "angular" )
            computed_errors = angularError(flow, ground_truth);
        else
        {
            printf("Invalid error measure! Available options: endpoint, angular\n");
            return -1;
        }

        Mat mask;
        if( region == "all" )
            mask = Mat::ones(ground_truth.size(), CV_8U) * 255;
        else if ( region == "discontinuities" )
        {
            Mat truth_merged, grad_x, grad_y, gradient;
            vector<Mat> truth_split;
            split(ground_truth, truth_split);
            truth_merged = truth_split[0] + truth_split[1];

            Sobel( truth_merged, grad_x, CV_16S, 1, 0, -1, 1, 0, BORDER_REPLICATE );
            grad_x = abs(grad_x);
            Sobel( truth_merged, grad_y, CV_16S, 0, 1, 1, 1, 0, BORDER_REPLICATE );
            grad_y = abs(grad_y);
            addWeighted(grad_x, 0.5, grad_y, 0.5, 0, gradient); //approximation!

            Scalar s_mean;
            s_mean = mean(gradient);
            double threshold = s_mean[0]; // threshold value arbitrary
            mask = gradient > threshold;
            dilate(mask, mask, Mat::ones(9, 9, CV_8U));
        }
        else if ( region == "untextured" )
        {
            Mat i1_grayscale, grad_x, grad_y, gradient;
            if( i1.channels() == 3 )
                cvtColor(i1, i1_grayscale, COLOR_BGR2GRAY);
            else
                i1_grayscale = i1;
            Sobel( i1_grayscale, grad_x, CV_16S, 1, 0, 7 );
            grad_x = abs(grad_x);
            Sobel( i1_grayscale, grad_y, CV_16S, 0, 1, 7 );
            grad_y = abs(grad_y);
            addWeighted(grad_x, 0.5, grad_y, 0.5, 0, gradient); //approximation!
            GaussianBlur(gradient, gradient, Size(5,5), 1, 1);

            Scalar s_mean;
            s_mean = mean(gradient);
            // arbitrary threshold value used - could be determined statistically from the image?
            double threshold = 1000;
            mask = gradient < threshold;
            dilate(mask, mask, Mat::ones(3, 3, CV_8U));
        }

        else
        {
            printf("Invalid region selected! Available options: all, discontinuities, untextured");
            return -1;
        }

        //masking out NaNs and incorrect GT values
        Mat truth_split[2];
        split(ground_truth, truth_split);
        Mat abs_mask = Mat((abs(truth_split[0]) < 1e9) & (abs(truth_split[1]) < 1e9));
        Mat nan_mask = Mat((truth_split[0]==truth_split[0]) & (truth_split[1] == truth_split[1]));
        bitwise_and(abs_mask, nan_mask, nan_mask);

        bitwise_and(nan_mask, mask, mask); //including the selected region

        if(display_images) // display difference between computed and GT flow
        {
            Mat difference = ground_truth - flow;
            Mat masked_difference;
            difference.copyTo(masked_difference, mask);
            Mat flow_image = flowToDisplay(masked_difference);
            namedWindow( "Error map", WINDOW_AUTOSIZE );
            imshow( "Error map", flow_image );
        }

        printf("Using %s error measure\n", error_measure.c_str());
        calculateStats(computed_errors, mask, display_images);

    }
    if(display_images) // wait for the user to see all the images
        waitKey(0);
    return 0;

}