dpm_cascade_detector.cpp 5.48 KB
Newer Older
jiaolong_x220's avatar
jiaolong_x220 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2015, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "dpm_cascade.hpp"

using namespace std;

namespace cv
{
namespace dpm
{

52
class DPMDetectorImpl CV_FINAL : public DPMDetector
jiaolong_x220's avatar
jiaolong_x220 committed
53 54 55 56
{
public:

    DPMDetectorImpl( const vector<string>& filenames, const vector<string>& classNames=vector<string>() );
57
    ~DPMDetectorImpl() CV_OVERRIDE;
jiaolong_x220's avatar
jiaolong_x220 committed
58

59
    bool isEmpty() const CV_OVERRIDE;
jiaolong_x220's avatar
jiaolong_x220 committed
60

61
    void detect(Mat &image, CV_OUT vector<ObjectDetection>& objects) CV_OVERRIDE;
jiaolong_x220's avatar
jiaolong_x220 committed
62

63 64
    const vector<string>& getClassNames() const CV_OVERRIDE;
    size_t getClassCount() const CV_OVERRIDE;
jiaolong_x220's avatar
jiaolong_x220 committed
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    string extractModelName( const string& filename );

private:
    vector< Ptr<DPMCascade> > detectors;
    vector<string> classNames;
};

Ptr<DPMDetector> DPMDetector::create(vector<string> const &filenames,
                                     vector<string> const &classNames)
{
    return makePtr<DPMDetectorImpl>(filenames, classNames);
}

DPMDetectorImpl::ObjectDetection::ObjectDetection()
    : score(0.f), classID(-1) {}

DPMDetectorImpl::ObjectDetection::ObjectDetection( const Rect& _rect, float _score, int _classID )
    : rect(_rect), score(_score), classID(_classID) {}


DPMDetectorImpl::DPMDetectorImpl( const vector<string>& filenames,
        const vector<string>& _classNames )
{
    for( size_t i = 0; i < filenames.size(); i++ )
    {
        const string filename = filenames[i];
        if( filename.length() < 5 || filename.substr(filename.length()-4, 4) != ".xml" )
            continue;

        Ptr<DPMCascade> detector = makePtr<DPMCascade>();

        // initialization
        detector->loadCascadeModel( filename.c_str() );

        if( detector )
        {
            detectors.push_back( detector );
            if( _classNames.empty() )
            {
                classNames.push_back( extractModelName(filename));
            }
            else
                classNames.push_back( _classNames[i] );
        }
    }
}

DPMDetectorImpl::~DPMDetectorImpl()
{
}

bool DPMDetectorImpl::isEmpty() const
{
    return detectors.empty();
}

const vector<string>& DPMDetectorImpl::getClassNames() const
{
    return classNames;
}

size_t DPMDetectorImpl::getClassCount() const
{
    return classNames.size();
}

string DPMDetectorImpl::extractModelName( const string& filename )
{
    size_t startPos = filename.rfind('/');
    if( startPos == string::npos )
        startPos = filename.rfind('\\');

    if( startPos == string::npos )
        startPos = 0;
    else
        startPos++;

    const int extentionSize = 4; //.xml

    int substrLength = (int)(filename.size() - startPos - extentionSize);

    return filename.substr(startPos, substrLength);
}

void DPMDetectorImpl::detect( Mat &image,
        vector<ObjectDetection> &objectDetections)
{
    objectDetections.clear();

    for( size_t classID = 0; classID < detectors.size(); classID++ )
    {
        // detect objects
        vector< vector<double> > detections;
        detections = detectors[classID]->detect(image);

        for (unsigned int i = 0; i < detections.size(); i++)
        {
            ObjectDetection ds = ObjectDetection();
            int s = (int)detections[i].size() - 1;
            ds.score = (float)detections[i][s];
            int x1 = (int)detections[i][0];
            int y1 = (int)detections[i][1];
            int w = (int)detections[i][2] - x1 + 1;
            int h = (int)detections[i][3] - y1 + 1;
            ds.rect = Rect(x1, y1, w, h);
            ds.classID = (int)classID;

            objectDetections.push_back(ds);
        }
    }
}

} // namespace cv
}