map_test.cpp 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include <iostream>
#define _USE_MATH_DEFINES
#include <cmath>
vbystricky's avatar
vbystricky committed
41
#include <opencv2/imgcodecs.hpp>
42 43 44 45
#include <opencv2/highgui.hpp> // OpenCV window I/O
#include <opencv2/imgproc.hpp> // OpenCV image transformations
#include <opencv2/imgproc.hpp>
#include <opencv2/imgproc/types_c.h>
vbystricky's avatar
vbystricky committed
46
#include <opencv2/imgcodecs/imgcodecs_c.h>
47 48 49
#include <opencv2/highgui/highgui_c.h>

#ifdef COMPARE_FEATURES
50
#include <opencv2/xfeatures2d.hpp>
51 52
#include <opencv2/calib3d.hpp>
#include <opencv2/calib3d/calib3d_c.h>
Philipp Hasper's avatar
Philipp Hasper committed
53
using namespace cv::xfeatures2d;
54
#endif
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

#include "opencv2/reg/mapaffine.hpp"
#include "opencv2/reg/mapshift.hpp"
#include "opencv2/reg/mapprojec.hpp"
#include "opencv2/reg/mappergradshift.hpp"
#include "opencv2/reg/mappergradeuclid.hpp"
#include "opencv2/reg/mappergradsimilar.hpp"
#include "opencv2/reg/mappergradaffine.hpp"
#include "opencv2/reg/mappergradproj.hpp"
#include "opencv2/reg/mapperpyramid.hpp"

static const char* DIFF_IM = "Image difference";
static const char* DIFF_REGPIX_IM = "Image difference: pixel registered";

using namespace cv;
using namespace cv::reg;
using namespace std;

73
static void showDifference(const Mat& image1, const Mat& image2, const char* title)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
{
    Mat img1, img2;
    image1.convertTo(img1, CV_32FC3);
    image2.convertTo(img2, CV_32FC3);
    if(img1.channels() != 1)
        cvtColor(img1, img1, CV_RGB2GRAY);
    if(img2.channels() != 1)
        cvtColor(img2, img2, CV_RGB2GRAY);

    Mat imgDiff;
    img1.copyTo(imgDiff);
    imgDiff -= img2;
    imgDiff /= 2.f;
    imgDiff += 128.f;

    Mat imgSh;
    imgDiff.convertTo(imgSh, CV_8UC3);
    imshow(title, imgSh);
}

94
static void testShift(const Mat& img1)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
{
    Mat img2;

    // Warp original image
    Vec<double, 2> shift(5., 5.);
    MapShift mapTest(shift);
    mapTest.warp(img1, img2);
    showDifference(img1, img2, DIFF_IM);

    // Register
    MapperGradShift mapper;
    MapperPyramid mappPyr(mapper);
    Ptr<Map> mapPtr;
    mappPyr.calculate(img1, img2, mapPtr);

    // Print result
    MapShift* mapShift = dynamic_cast<MapShift*>(mapPtr.get());
    cout << endl << "--- Testing shift mapper ---" << endl;
    cout << Mat(shift) << endl;
    cout << Mat(mapShift->getShift()) << endl;

    // Display registration accuracy
    Mat dest;
    mapShift->inverseWarp(img2, dest);
    showDifference(img1, dest, DIFF_REGPIX_IM);

    waitKey(0);
    cvDestroyWindow(DIFF_IM);
    cvDestroyWindow(DIFF_REGPIX_IM);
}

126
static void testEuclidean(const Mat& img1)
127 128 129 130
{
    Mat img2;

    // Warp original image
Ilya Lavrenov's avatar
Ilya Lavrenov committed
131
    double theta = 3*CV_PI/180;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    double cosT = cos(theta);
    double sinT = sin(theta);
    Matx<double, 2, 2> linTr(cosT, -sinT, sinT, cosT);
    Vec<double, 2> shift(5., 5.);
    MapAffine mapTest(linTr, shift);
    mapTest.warp(img1, img2);
    showDifference(img1, img2, DIFF_IM);

    // Register
    MapperGradEuclid mapper;
    MapperPyramid mappPyr(mapper);
    Ptr<Map> mapPtr;
    mappPyr.calculate(img1, img2, mapPtr);

    // Print result
    MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
    cout << endl << "--- Testing Euclidean mapper ---" << endl;
    cout << Mat(linTr) << endl;
    cout << Mat(shift) << endl;
    cout << Mat(mapAff->getLinTr()) << endl;
    cout << Mat(mapAff->getShift()) << endl;

    // Display registration accuracy
    Mat dest;
    mapAff->inverseWarp(img2, dest);
    showDifference(img1, dest, DIFF_REGPIX_IM);

    waitKey(0);
    cvDestroyWindow(DIFF_IM);
    cvDestroyWindow(DIFF_REGPIX_IM);
}

164
static void testSimilarity(const Mat& img1)
165 166 167 168
{
    Mat img2;

    // Warp original image
Ilya Lavrenov's avatar
Ilya Lavrenov committed
169
    double theta = 3*CV_PI/180;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    double scale = 0.95;
    double a = scale*cos(theta);
    double b = scale*sin(theta);
    Matx<double, 2, 2> linTr(a, -b, b, a);
    Vec<double, 2> shift(5., 5.);
    MapAffine mapTest(linTr, shift);
    mapTest.warp(img1, img2);
    showDifference(img1, img2, DIFF_IM);

    // Register
    MapperGradSimilar mapper;
    MapperPyramid mappPyr(mapper);
    Ptr<Map> mapPtr;
    mappPyr.calculate(img1, img2, mapPtr);

    // Print result
    MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
    cout << endl << "--- Testing similarity mapper ---" << endl;
    cout << Mat(linTr) << endl;
    cout << Mat(shift) << endl;
    cout << Mat(mapAff->getLinTr()) << endl;
    cout << Mat(mapAff->getShift()) << endl;

    // Display registration accuracy
    Mat dest;
    mapAff->inverseWarp(img2, dest);
    showDifference(img1, dest, DIFF_REGPIX_IM);

    waitKey(0);
    cvDestroyWindow(DIFF_IM);
    cvDestroyWindow(DIFF_REGPIX_IM);
}

203
static void testAffine(const Mat& img1)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
{
    Mat img2;

    // Warp original image
    Matx<double, 2, 2> linTr(1., 0.1, -0.01, 1.);
    Vec<double, 2> shift(1., 1.);
    MapAffine mapTest(linTr, shift);
    mapTest.warp(img1, img2);
    showDifference(img1, img2, DIFF_IM);

    // Register
    MapperGradAffine mapper;
    MapperPyramid mappPyr(mapper);
    Ptr<Map> mapPtr;
    mappPyr.calculate(img1, img2, mapPtr);

    // Print result
    MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
    cout << endl << "--- Testing affine mapper ---" << endl;
    cout << Mat(linTr) << endl;
    cout << Mat(shift) << endl;
    cout << Mat(mapAff->getLinTr()) << endl;
    cout << Mat(mapAff->getShift()) << endl;

    // Display registration accuracy
    Mat dest;
    mapAff->inverseWarp(img2, dest);
    showDifference(img1, dest, DIFF_REGPIX_IM);

    waitKey(0);
    cvDestroyWindow(DIFF_IM);
    cvDestroyWindow(DIFF_REGPIX_IM);
}

238
static void testProjective(const Mat& img1)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
{
    Mat img2;

    // Warp original image
    Matx<double, 3, 3> projTr(1., 0., 0., 0., 1., 0., 0.0001, 0.0001, 1);
    MapProjec mapTest(projTr);
    mapTest.warp(img1, img2);
    showDifference(img1, img2, DIFF_IM);

    // Register
    MapperGradProj mapper;
    MapperPyramid mappPyr(mapper);
    Ptr<Map> mapPtr;
    mappPyr.calculate(img1, img2, mapPtr);

    // Print result
    MapProjec* mapProj = dynamic_cast<MapProjec*>(mapPtr.get());
    mapProj->normalize();
    cout << endl << "--- Testing projective transformation mapper ---" << endl;
    cout << Mat(projTr) << endl;
    cout << Mat(mapProj->getProjTr()) << endl;

    // Display registration accuracy
    Mat dest;
    mapProj->inverseWarp(img2, dest);
    showDifference(img1, dest, DIFF_REGPIX_IM);

    waitKey(0);
    cvDestroyWindow(DIFF_IM);
    cvDestroyWindow(DIFF_REGPIX_IM);
}

271
#ifdef COMPARE_FEATURES
272 273 274 275
//
// Following an example from
// http:// ramsrigoutham.com/2012/11/22/panorama-image-stitching-in-opencv/
//
276
static void calcHomographyFeature(const Mat& image1, const Mat& image2)
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
{
    static const char* difffeat = "Difference feature registered";

    Mat gray_image1;
    Mat gray_image2;
    // Convert to Grayscale
    if(image1.channels() != 1)
        cvtColor(image1, gray_image1, CV_RGB2GRAY);
    else
        image1.copyTo(gray_image1);
    if(image2.channels() != 1)
        cvtColor(image2, gray_image2, CV_RGB2GRAY);
    else
        image2.copyTo(gray_image2);

292 293 294 295
    //-- Step 1: Detect the keypoints using SIFT or SURF Detector
#ifdef USE_SIFT
    Ptr<Feature2D> features = SIFT::create();
#else
296
    int minHessian = 400;
297 298
    Ptr<Feature2D> features = SURF::create(minHessian);
#endif
299 300 301

    std::vector<KeyPoint> keypoints_object, keypoints_scene;

302 303
    features->detect(gray_image1, keypoints_object);
    features->detect(gray_image2, keypoints_scene);
304 305 306 307 308

    //-- Step 2: Calculate descriptors (feature vectors)

    Mat descriptors_object, descriptors_scene;

309 310
    features->compute(gray_image1, keypoints_object, descriptors_object);
    features->compute(gray_image2, keypoints_scene, descriptors_scene);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    //-- Step 3: Matching descriptor vectors using FLANN matcher
    FlannBasedMatcher matcher;
    std::vector<DMatch> matches;
    matcher.match(descriptors_object, descriptors_scene, matches);

    double max_dist = 0; double min_dist = 100;

    //-- Quick calculation of max and min distances between keypoints
    for(int i = 0; i < descriptors_object.rows; i++)
    {
        double dist = matches[i].distance;
        if( dist < min_dist ) min_dist = dist;
        if( dist > max_dist ) max_dist = dist;
    }

    //-- Use only "good" matches (i.e. whose distance is less than 3*min_dist)
    std::vector<DMatch> good_matches;

    for(int i = 0; i < descriptors_object.rows; i++) {
        if(matches[i].distance < 3*min_dist) {
            good_matches.push_back( matches[i]);
        }
    }
    std::vector< Point2f > obj;
    std::vector< Point2f > scene;

    for(size_t i = 0; i < good_matches.size(); i++)
    {
        //-- Get the keypoints from the good matches
        obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
        scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
    }

    // Find the Homography Matrix
    Mat H = findHomography( obj, scene, CV_RANSAC );
    // Use the Homography Matrix to warp the images
    Mat result;
    Mat Hinv = H.inv();
    warpPerspective(image2, result, Hinv, image1.size());

    cout << "--- Feature method\n" << H << endl;
    
    Mat imf1, resf;
    image1.convertTo(imf1, CV_64FC3);
    result.convertTo(resf, CV_64FC3);
    showDifference(imf1, resf, difffeat);
}

360
static void calcHomographyPixel(const Mat& img1, const Mat& img2)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
{
    static const char* diffpixel = "Difference pixel registered";

    // Register using pixel differences
    MapperGradProj mapper;
    MapperPyramid mappPyr(mapper);
    Ptr<Map> mapPtr;
    mappPyr.calculate(img1, img2, mapPtr);

    // Print result
    MapProjec* mapProj = dynamic_cast<MapProjec*>(mapPtr.get());
    mapProj->normalize();
    cout << "--- Pixel-based method\n" << Mat(mapProj->getProjTr()) << endl;

    // Display registration accuracy
    Mat dest;
    mapProj->inverseWarp(img2, dest);
    showDifference(img1, dest, diffpixel);
}

381
static void comparePixelVsFeature(const Mat& img1_8b, const Mat& img2_8b)
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
{
    static const char* difforig = "Difference non-registered";

    // Show difference of images
    Mat img1, img2;
    img1_8b.convertTo(img1, CV_64FC3);
    img2_8b.convertTo(img2, CV_64FC3);
    showDifference(img1, img2, difforig);
    cout << endl << "--- Comparing feature-based with pixel difference based ---" << endl;

    // Register using SURF keypoints
    calcHomographyFeature(img1_8b, img2_8b);

    // Register using pixel differences
    calcHomographyPixel(img1, img2);

    waitKey(0);
}
400
#endif
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

int main(void)
{
    Mat img1;    
    img1 = imread("home.png", CV_LOAD_IMAGE_UNCHANGED);
    if(!img1.data) {
        cout <<  "Could not open or find file" << endl;
        return -1;
    }
    // Convert to double, 3 channels
    img1.convertTo(img1, CV_64FC3);

    testShift(img1);
    testEuclidean(img1);
    testSimilarity(img1);
    testAffine(img1);
    testProjective(img1);

419
#ifdef COMPARE_FEATURES
420 421 422 423 424 425 426 427 428 429 430 431
    Mat imgcmp1 = imread("LR_05.png", CV_LOAD_IMAGE_UNCHANGED);
    if(!imgcmp1.data) {
        cout <<  "Could not open or find file" << endl;
        return -1;
    }

    Mat imgcmp2 = imread("LR_06.png", CV_LOAD_IMAGE_UNCHANGED);
    if(!imgcmp2.data) {
        cout <<  "Could not open or find file" << endl;
        return -1;
    }
    comparePixelVsFeature(imgcmp1, imgcmp2);
432
#endif
433 434 435

    return 0;
}