projection.h 7.25 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
// Copyright (c) 2007, 2008 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.

#ifndef LIBMV_MULTIVIEW_PROJECTION_H_
#define LIBMV_MULTIVIEW_PROJECTION_H_

#include "libmv/numeric/numeric.h"

namespace libmv {

void P_From_KRt(const Mat3 &K, const Mat3 &R, const Vec3 &t, Mat34 *P);
void KRt_From_P(const Mat34 &P, Mat3 *K, Mat3 *R, Vec3 *t);

// Applies a change of basis to the image coordinates of the projection matrix
// so that the principal point becomes principal_point_new.
void ProjectionShiftPrincipalPoint(const Mat34 &P,
                                   const Vec2 &principal_point,
                                   const Vec2 &principal_point_new,
                                   Mat34 *P_new);

// Applies a change of basis to the image coordinates of the projection matrix
// so that the aspect ratio becomes aspect_ratio_new.  This is done by
// stretching the y axis.  The aspect ratio is defined as the quotient between
// the focal length of the y and the x axis.
void ProjectionChangeAspectRatio(const Mat34 &P,
                                 const Vec2 &principal_point,
                                 double aspect_ratio,
                                 double aspect_ratio_new,
                                 Mat34 *P_new);

void HomogeneousToEuclidean(const Mat &H, Mat *X);
void HomogeneousToEuclidean(const Mat3X &h, Mat2X *e);
void HomogeneousToEuclidean(const Mat4X &h, Mat3X *e);
void HomogeneousToEuclidean(const Vec3 &H, Vec2 *X);
void HomogeneousToEuclidean(const Vec4 &H, Vec3 *X);
inline Vec2 HomogeneousToEuclidean(const Vec3 &h) {
  return h.head<2>() / h(2);
}
inline Vec3 HomogeneousToEuclidean(const Vec4 &h) {
  return h.head<3>() / h(3);
}
inline Mat2X HomogeneousToEuclidean(const Mat3X &h) {
  Mat2X e(2, h.cols());
  e.row(0) = h.row(0).array() / h.row(2).array();
  e.row(1) = h.row(1).array() / h.row(2).array();
  return e;
}

void EuclideanToHomogeneous(const Mat &X, Mat *H);
inline Mat3X EuclideanToHomogeneous(const Mat2X &x) {
  Mat3X h(3, x.cols());
  h.block(0, 0, 2, x.cols()) = x;
  h.row(2).setOnes();
  return h;
}
inline void EuclideanToHomogeneous(const Mat2X &x, Mat3X *h) {
  h->resize(3, x.cols());
  h->block(0, 0, 2, x.cols()) = x;
  h->row(2).setOnes();
}
inline Mat4X EuclideanToHomogeneous(const Mat3X &x) {
  Mat4X h(4, x.cols());
  h.block(0, 0, 3, x.cols()) = x;
  h.row(3).setOnes();
  return h;
}
inline void EuclideanToHomogeneous(const Mat3X &x, Mat4X *h) {
  h->resize(4, x.cols());
  h->block(0, 0, 3, x.cols()) = x;
  h->row(3).setOnes();
}
void EuclideanToHomogeneous(const Vec2 &X, Vec3 *H);
void EuclideanToHomogeneous(const Vec3 &X, Vec4 *H);
inline Vec3 EuclideanToHomogeneous(const Vec2 &x) {
  return Vec3(x(0), x(1), 1);
}
inline Vec4 EuclideanToHomogeneous(const Vec3 &x) {
  return Vec4(x(0), x(1), x(2), 1);
}
// Conversion from image coordinates to normalized camera coordinates
void EuclideanToNormalizedCamera(const Mat2X &x, const Mat3 &K, Mat2X *n);
void HomogeneousToNormalizedCamera(const Mat3X &x, const Mat3 &K, Mat2X *n);

inline Vec2 Project(const Mat34 &P, const Vec3 &X) {
  Vec4 HX;
  HX << X, 1.0;
  Vec3 hx = P * HX;
  return hx.head<2>() / hx(2);
}

inline void Project(const Mat34 &P, const Vec4 &X, Vec3 *x) {
  *x = P * X;
}

inline void Project(const Mat34 &P, const Vec4 &X, Vec2 *x) {
  Vec3 hx = P * X;
  *x = hx.head<2>() / hx(2);
}

inline void Project(const Mat34 &P, const Vec3 &X, Vec3 *x) {
  Vec4 HX;
  HX << X, 1.0;
  Project(P, HX, x);
}

inline void Project(const Mat34 &P, const Vec3 &X, Vec2 *x) {
  Vec3 hx;
  Project(P, X, x);
  *x = hx.head<2>() / hx(2);
}

inline void Project(const Mat34 &P, const Mat4X &X, Mat2X *x) {
  x->resize(2, X.cols());
  for (int c = 0; c < X.cols(); ++c) {
    Vec3 hx = P * X.col(c);
    x->col(c) = hx.head<2>() / hx(2);
  }
}

inline Mat2X Project(const Mat34 &P, const Mat4X &X) {
  Mat2X x;
  Project(P, X, &x);
  return x;
}

inline void Project(const Mat34 &P, const Mat3X &X, Mat2X *x) {
  x->resize(2, X.cols());
  for (int c = 0; c < X.cols(); ++c) {
    Vec4 HX;
    HX << X.col(c), 1.0;
    Vec3 hx = P * HX;
    x->col(c) = hx.head<2>() / hx(2);
  }
}

inline void Project(const Mat34 &P, const Mat3X &X, const Vecu &ids, Mat2X *x) {
  x->resize(2, ids.size());
  Vec4 HX;
  Vec3 hx;
  for (int c = 0; c < ids.size(); ++c) {
    HX << X.col(ids[c]), 1.0;
    hx = P * HX;
    x->col(c) = hx.head<2>() / hx(2);
  }
}

inline Mat2X Project(const Mat34 &P, const Mat3X &X) {
  Mat2X x(2, X.cols());
  Project(P, X, &x);
  return x;
}

inline Mat2X Project(const Mat34 &P, const Mat3X &X, const Vecu &ids) {
  Mat2X x(2, ids.size());
  Project(P, X, ids, &x);
  return x;
}

double Depth(const Mat3 &R, const Vec3 &t, const Vec3 &X);
double Depth(const Mat3 &R, const Vec3 &t, const Vec4 &X);

/**
* Returns true if the homogenious 3D point X is in front of
* the camera P.
*/
inline bool isInFrontOfCamera(const Mat34 &P, const Vec4 &X) {
  double condition_1 = P.row(2).dot(X) * X[3];
  double condition_2 = X[2] * X[3];
  if (condition_1 > 0 && condition_2 > 0)
    return true;
  else
    return false;
}

inline bool isInFrontOfCamera(const Mat34 &P, const Vec3 &X) {
  Vec4 X_homo;
  X_homo.segment<3>(0) = X;
  X_homo(3) = 1;
  return isInFrontOfCamera( P, X_homo);
}

/**
* Transforms a 2D point from pixel image coordinates to a 2D point in
* normalized image coordinates.
*/
inline Vec2 ImageToNormImageCoordinates(Mat3 &Kinverse, Vec2 &x) {
  Vec3 x_h = Kinverse*EuclideanToHomogeneous(x);
  return HomogeneousToEuclidean( x_h );
}

/// Estimates the root mean square error (2D)
inline double RootMeanSquareError(const Mat2X &x_image,
                                  const Mat4X &X_world,
                                  const Mat34 &P) {
  size_t num_points = x_image.cols();
  Mat2X dx = Project(P, X_world) - x_image;
  return dx.norm() / num_points;
}

/// Estimates the root mean square error (2D)
inline double RootMeanSquareError(const Mat2X &x_image,
                                  const Mat3X &X_world,
                                  const Mat3 &K,
                                  const Mat3 &R,
                                  const Vec3 &t) {
  Mat34 P;
  P_From_KRt(K, R, t, &P);
  size_t num_points = x_image.cols();
  Mat2X dx = Project(P, X_world) - x_image;
  return dx.norm() / num_points;
}
}  // namespace libmv

#endif  // LIBMV_MULTIVIEW_PROJECTION_H_