anisodiff.cpp 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/* the reference code has been contributed by Chris Sav */

#include "precomp.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include "opencl_kernels_ximgproc.hpp"

namespace cv {
namespace ximgproc {

#if CV_SIMD128
inline void v_expand_s(const v_uint8x16& a, v_int16x8& b, v_int16x8& c)
{
    v_uint16x8 t0, t1;
    v_expand(a, t0, t1);
    b = v_reinterpret_as_s16(t0);
    c = v_reinterpret_as_s16(t1);
}

inline void v_expand_f32(const v_int16x8& a, v_float32x4& b, v_float32x4& c)
{
    v_int32x4 t0, t1;
    v_expand(a, t0, t1);
    b = v_cvt_f32(t0);
    c = v_cvt_f32(t1);
}

inline v_uint8x16 v_finalize_pix_ch(const v_int16x8& c0, const v_int16x8& c1,
                                    const v_float32x4& s0, const v_float32x4& s1,
                                    const v_float32x4& s2, const v_float32x4& s3,
                                    const v_float32x4& alpha)
{
    v_float32x4 f0, f1, f2, f3;
    v_expand_f32(c0, f0, f1);
    v_expand_f32(c1, f2, f3);

    v_int16x8 d0 = v_pack(v_round(s0*alpha + f0), v_round(s1*alpha + f1));
    v_int16x8 d1 = v_pack(v_round(s2*alpha + f2), v_round(s3*alpha + f3));

    return v_pack_u(d0, d1);
}
#endif

class ADBody : public ParallelLoopBody
{
public:
    ADBody(const Mat* src_, Mat* dst_, const float* exptab, float alpha)
    {
        src = src_;
        dst = dst_;
        exptab_ = exptab;
        alpha_ = alpha;
    }

    void operator()(const Range& range) const
    {
        const int cn = 3;
        int cols = src->cols;
        int step = (int)src->step;
        int tab[] = { -cn, cn, -step-cn, -step, -step+cn, step-cn, step, step+cn };
        float alpha = alpha_;
        const float* exptab = exptab_;

        for( int i = range.start; i < range.end; i++ )
        {
            const uchar* psrc0 = src->ptr<uchar>(i);
            uchar* pdst = dst->ptr<uchar>(i);
            int j = 0;

#if CV_SIMD128
            v_float32x4 v_alpha = v_setall_f32(alpha);
            for( ; j <= cols - 16; j += 16 )
            {
                v_uint8x16 c0, c1, c2;
                v_load_deinterleave(psrc0 + j*3, c0, c1, c2);
                v_int16x8 c00, c01, c10, c11, c20, c21;

                v_expand_s(c0, c00, c01);
                v_expand_s(c1, c10, c11);
                v_expand_s(c2, c20, c21);

                v_float32x4 s00 = v_setzero_f32(), s01 = s00, s02 = s00, s03 = s00;
                v_float32x4 s10 = v_setzero_f32(), s11 = s00, s12 = s00, s13 = s00;
                v_float32x4 s20 = v_setzero_f32(), s21 = s00, s22 = s00, s23 = s00;
                v_float32x4 fd0, fd1, fd2, fd3;

                for( int k = 0; k < 8; k++ )
                {
                    const uchar* psrc1 = psrc0 + j*3 + tab[k];
                    v_uint8x16 p0, p1, p2;
                    v_int16x8 p00, p01, p10, p11, p20, p21;
                    v_load_deinterleave(psrc1, p0, p1, p2);

                    v_expand_s(p0, p00, p01);
                    v_expand_s(p1, p10, p11);
                    v_expand_s(p2, p20, p21);

                    v_int16x8 d00 = p00 - c00, d01 = p01 - c01;
                    v_int16x8 d10 = p10 - c10, d11 = p11 - c11;
                    v_int16x8 d20 = p20 - c20, d21 = p21 - c21;

                    v_uint16x8 n0 = v_abs(d00) + v_abs(d10) + v_abs(d20);
                    v_uint16x8 n1 = v_abs(d01) + v_abs(d11) + v_abs(d21);

                    ushort CV_DECL_ALIGNED(16) nbuf[16];
                    v_store(nbuf, n0);
                    v_store(nbuf + 8, n1);

                    v_float32x4 w0(exptab[nbuf[0]], exptab[nbuf[1]], exptab[nbuf[2]], exptab[nbuf[3]]);
                    v_float32x4 w1(exptab[nbuf[4]], exptab[nbuf[5]], exptab[nbuf[6]], exptab[nbuf[7]]);
                    v_float32x4 w2(exptab[nbuf[8]], exptab[nbuf[9]], exptab[nbuf[10]], exptab[nbuf[11]]);
                    v_float32x4 w3(exptab[nbuf[12]], exptab[nbuf[13]], exptab[nbuf[14]], exptab[nbuf[15]]);

                    v_expand_f32(d00, fd0, fd1);
                    v_expand_f32(d01, fd2, fd3);
                    s00 += fd0*w0; s01 += fd1*w1; s02 += fd2*w2; s03 += fd3*w3;
                    v_expand_f32(d10, fd0, fd1);
                    v_expand_f32(d11, fd2, fd3);
                    s10 += fd0*w0; s11 += fd1*w1; s12 += fd2*w2; s13 += fd3*w3;
                    v_expand_f32(d20, fd0, fd1);
                    v_expand_f32(d21, fd2, fd3);
                    s20 += fd0*w0; s21 += fd1*w1; s22 += fd2*w2; s23 += fd3*w3;
                }

                c0 = v_finalize_pix_ch(c00, c01, s00, s01, s02, s03, v_alpha);
                c1 = v_finalize_pix_ch(c10, c11, s10, s11, s12, s13, v_alpha);
                c2 = v_finalize_pix_ch(c20, c21, s20, s21, s22, s23, v_alpha);
                v_store_interleave(pdst + j*3, c0, c1, c2);
            }
            j *= 3;
#endif
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
            for( ; j < cols*cn; j += cn )
            {
                int c0  = psrc0[j], c1 = psrc0[j+1], c2 = psrc0[j+2];
                float s0 = 0.f, s1 = 0.f, s2 = 0.f;
                for( int k = 0; k < 8; k++ )
                {
                    const uchar* psrc1 = psrc0 + j + tab[k];
                    int delta0 = psrc1[0] - c0;
                    int delta1 = psrc1[1] - c1;
                    int delta2 = psrc1[2] - c2;
                    int nabla = std::abs(delta0) + std::abs(delta1) + std::abs(delta2);
                    float w = exptab[nabla];
                    s0 += delta0*w;
                    s1 += delta1*w;
                    s2 += delta2*w;
                }
                pdst[j] = saturate_cast<uchar>(c0 + alpha*s0);
                pdst[j+1] = saturate_cast<uchar>(c1 + alpha*s1);
                pdst[j+2] = saturate_cast<uchar>(c2 + alpha*s2);
            }
        }
    }
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    const Mat* src;
    Mat* dst;
    const float* exptab_;
    float alpha_;
};

#ifdef HAVE_OPENCL
static bool ocl_anisotropicDiffusion(InputArray src_, OutputArray dst_,
                                     float alpha, int niters,
                                     const std::vector<float>& exptab)
{
    UMat src0 = src_.getUMat(), dst0 = dst_.getUMat();
    int type = src0.type();
    int rows = src0.rows, cols = src0.cols;

    ocl::Kernel k("anisodiff", ocl::ximgproc::anisodiff_oclsrc, "");
    if (k.empty())
        return false;

    UMat temp0x(rows + 2, cols + 2, type);
    UMat temp1x(rows + 2, cols + 2, type);
    UMat temp0(temp0x, Rect(1, 1, cols, rows));
    UMat temp1(temp1x, Rect(1, 1, cols, rows));

    int tabsz = (int)exptab.size();
    UMat uexptab = Mat(1, tabsz, CV_32F, (void*)&exptab[0]).getUMat(ACCESS_READ);

    for (int t = 0; t < niters; t++)
    {
        UMat src = temp0, dst = t == niters-1 ? dst0 : temp1;
        copyMakeBorder(t == 0 ? src0 : src, temp0x, 1, 1, 1, 1, BORDER_REPLICATE);

        k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst),
               ocl::KernelArg::PtrReadOnly(uexptab), alpha);

231
        size_t globalsize[] = { (size_t)cols, (size_t)rows };
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        if(!k.run(2, globalsize, NULL, true))
            return false;

        std::swap(temp0, temp1);
        std::swap(temp0x, temp1x);
    }
    return true;
}
#endif

void anisotropicDiffusion(InputArray src_, OutputArray dst_, float alpha, float K, int niters )
{
    if( niters == 0 )
    {
        src_.copyTo(dst_);
        return;
    }

    int type = src_.type();
    CV_Assert(src_.dims() == 2 && type == CV_8UC3);
    CV_Assert(K != 0);
    CV_Assert(alpha > 0);
    CV_Assert(niters >= 0);

    const int cn = 3;
    float sigma = K * cn * 255.f;
    float isigma2 = 1 / (sigma * sigma);
    std::vector<float> exptab_(255*3);
    float* exptab = &exptab_[0];

    for( int k = 0; k < 255*3; k++ )
        exptab[k] = std::exp(-k*k*isigma2);

    dst_.create(src_.size(), type);

    CV_OCL_RUN(dst_.isUMat(),
               ocl_anisotropicDiffusion(src_, dst_, alpha, niters, exptab_));

    Mat src0 = src_.getMat();
    int rows = src0.rows, cols = src0.cols;

    Mat dst0 = dst_.getMat();
    Mat temp0x(rows + 2, cols + 2, type);
    Mat temp1x(rows + 2, cols + 2, type);
    Mat temp0(temp0x, Rect(1, 1, cols, rows));
    Mat temp1(temp1x, Rect(1, 1, cols, rows));

    for (int t = 0; t < niters; t++)
    {
        Mat src = temp0, dst = t == niters-1 ? dst0 : temp1;
        copyMakeBorder(t == 0 ? src0 : src, temp0x, 1, 1, 1, 1, BORDER_REPLICATE);

        ADBody body(&src, &dst, exptab, alpha);
        parallel_for_(Range(0, rows), body, 8);
286

287 288 289 290 291 292 293
        std::swap(temp0, temp1);
        std::swap(temp0x, temp1x);
    }
}

}
}