euclidean_resection.h 5.88 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
// Copyright (c) 2010 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.

#ifndef LIBMV_MULTIVIEW_EUCLIDEAN_RESECTION_H_
#define LIBMV_MULTIVIEW_EUCLIDEAN_RESECTION_H_

#include "libmv/numeric/numeric.h"
#include "libmv/multiview/projection.h"

namespace libmv {
namespace euclidean_resection {

enum ResectionMethod {
  RESECTION_ANSAR_DANIILIDIS,

  // The "EPnP" algorithm by Lepetit et al.
  // http://cvlab.epfl.ch/~lepetit/papers/lepetit_ijcv08.pdf
  RESECTION_EPNP,

  // The Procrustes PNP algorithm ("PPnP")
  // http://www.diegm.uniud.it/fusiello/papers/3dimpvt12-b.pdf
  RESECTION_PPNP
};

/**
 * Computes the extrinsic parameters, R and t for a calibrated camera
 * from 4 or more 3D points and their normalized images.
 *
 * \param x_camera  Image points in normalized camera coordinates e.g. x_camera
 *                   = inv(K) * x_image.
 * \param X_world   3D points in the world coordinate system
 * \param R         Solution for the camera rotation matrix
 * \param t         Solution for the camera translation vector
 * \param method    The resection method to use.
 */
bool EuclideanResection(const Mat2X &x_camera,
                        const Mat3X &X_world,
                        Mat3 *R, Vec3 *t,
                        ResectionMethod method = RESECTION_EPNP);

/**
 * Computes the extrinsic parameters, R and t for a calibrated camera
 * from 4 or more 3D points and their images.
 *
 * \param x_image   Image points in non-normalized image coordinates. The
 *                  coordates are laid out one per row. The matrix can be Nx2
 *                  or Nx3 for euclidean or homogenous 2D coordinates.
 * \param X_world   3D points in the world coordinate system
 * \param K         Intrinsic parameters camera matrix
 * \param R         Solution for the camera rotation matrix
 * \param t         Solution for the camera translation vector
 * \param method    Resection method
 */
bool EuclideanResection(const Mat &x_image,
                        const Mat3X &X_world,
                        const Mat3 &K,
                        Mat3 *R, Vec3 *t,
                        ResectionMethod method = RESECTION_EPNP);

/**
 * The absolute orientation algorithm recovers the transformation between a set
 * of 3D points, X and Xp such that:
 *
 *           Xp = R*X + t
 *
 * The recovery of the absolute orientation is implemented after this article:
 * Horn, Hilden, "Closed-form solution of absolute orientation using
 * orthonormal matrices"
 */
void AbsoluteOrientation(const Mat3X &X,
                         const Mat3X &Xp,
                         Mat3 *R,
                         Vec3 *t);

/**
 * Computes the extrinsic parameters, R and t for a calibrated camera from 4 or
 * more 3D points and their images.
 *
 * \param x_camera Image points in normalized camera coordinates, e.g.
 *                 x_camera=inv(K)*x_image
 * \param X_world  3D points in the world coordinate system
 * \param R        Solution for the camera rotation matrix
 * \param t        Solution for the camera translation vector
 *
 * This is the algorithm described in: "Linear Pose Estimation from Points or
 * Lines", by Ansar, A. and Daniilidis, PAMI 2003. vol. 25, no. 5.
 */
void EuclideanResectionAnsarDaniilidis(const Mat2X &x_camera,
                                       const Mat3X &X_world,
                                       Mat3 *R, Vec3 *t);
/**
 * Computes the extrinsic parameters, R and t for a calibrated camera from 4 or
 * more 3D points and their images.
 *
 * \param x_camera Image points in normalized camera coordinates,
 *                 e.g. x_camera = inv(K) * x_image
 * \param X_world 3D points in the world coordinate system
 * \param R       Solution for the camera rotation matrix
 * \param t       Solution for the camera translation vector
 *
 * This is the algorithm described in:
 * "{EP$n$P: An Accurate $O(n)$ Solution to the P$n$P Problem", by V. Lepetit
 * and F. Moreno-Noguer and P. Fua, IJCV 2009. vol. 81, no. 2
 * \note: the non-linear optimization is not implemented here.
 */
bool EuclideanResectionEPnP(const Mat2X &x_camera,
                            const Mat3X &X_world,
                            Mat3 *R, Vec3 *t);

/**
 * Computes the extrinsic parameters, R and t for a calibrated camera from 4 or
 * more 3D points and their images.
 *
 * \param x_camera Image points in normalized camera coordinates,
 *                 e.g. x_camera = inv(K) * x_image
 * \param X_world 3D points in the world coordinate system
 * \param R       Solution for the camera rotation matrix
 * \param t       Solution for the camera translation vector
 *
 * Straight from the paper:
 * http://www.diegm.uniud.it/fusiello/papers/3dimpvt12-b.pdf
 */
bool EuclideanResectionPPnP(const Mat2X &x_camera,
                            const Mat3X &X_world,
                            Mat3 *R, Vec3 *t);

}  // namespace euclidean_resection
}  // namespace libmv


#endif /* LIBMV_MULTIVIEW_EUCLIDEAN_RESECTION_H_ */