test_adaptive_manifold.cpp 5.41 KB
Newer Older
1 2 3
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
vludv's avatar
vludv committed
4 5
#include "test_precomp.hpp"

6 7 8
namespace opencv_test {
Ptr<AdaptiveManifoldFilter> createAMFilterRefImpl(double sigma_s, double sigma_r, bool adjust_outliers = false);
namespace {
vludv's avatar
vludv committed
9 10 11 12 13 14 15 16 17 18

#ifndef SQR
#define SQR(x) ((x)*(x))
#endif

static string getOpenCVExtraDir()
{
    return cvtest::TS::ptr()->get_data_path();
}

19
static void checkSimilarity(InputArray res, InputArray ref, double maxNormInf = 1, double maxNormL2 = 1.0 / 64)
vludv's avatar
vludv committed
20 21 22 23
{
    double normInf = cvtest::norm(res, ref, NORM_INF);
    double normL2 = cvtest::norm(res, ref, NORM_L2) / res.total();

24 25
    if (maxNormInf >= 0) { EXPECT_LE(normInf, maxNormInf); }
    if (maxNormL2 >= 0) { EXPECT_LE(normL2, maxNormL2); }
vludv's avatar
vludv committed
26 27 28 29 30 31
}

TEST(AdaptiveManifoldTest, SplatSurfaceAccuracy)
{
    RNG rnd(0);

32
    for (int i = 0; i < 5; i++)
vludv's avatar
vludv committed
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    {
        Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));

        int guideCn = rnd.uniform(1, 8);
        Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn));
        randu(guide, 0, 1);

        Scalar surfaceValue;
        int srcCn = rnd.uniform(1, 4);
        rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
        Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);

        double sigma_s = rnd.uniform(1.0, 50.0);
        double sigma_r = rnd.uniform(0.1, 0.9);

        Mat res;
        amFilter(guide, src, res, sigma_s, sigma_r, false);

        double normInf = cvtest::norm(src, res, NORM_INF);
        EXPECT_EQ(normInf, 0);
    }
}

TEST(AdaptiveManifoldTest, AuthorsReferenceAccuracy)
{
    String srcImgPath = "cv/edgefilter/kodim23.png";
59

vludv's avatar
vludv committed
60 61 62 63 64 65 66
    String refPaths[] =
    {
        "cv/edgefilter/amf/kodim23_amf_ss5_sr0.3_ref.png",
        "cv/edgefilter/amf/kodim23_amf_ss30_sr0.1_ref.png",
        "cv/edgefilter/amf/kodim23_amf_ss50_sr0.3_ref.png"
    };

67
    pair<double, double> refParams[] =
vludv's avatar
vludv committed
68 69 70 71 72 73
    {
        make_pair(5.0, 0.3),
        make_pair(30.0, 0.1),
        make_pair(50.0, 0.3)
    };

74
    String refOutliersPaths[] =
vludv's avatar
vludv committed
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    {
        "cv/edgefilter/amf/kodim23_amf_ss5_sr0.1_outliers_ref.png",
        "cv/edgefilter/amf/kodim23_amf_ss15_sr0.3_outliers_ref.png",
        "cv/edgefilter/amf/kodim23_amf_ss50_sr0.5_outliers_ref.png"
    };

    pair<double, double> refOutliersParams[] =
    {
        make_pair(5.0, 0.1),
        make_pair(15.0, 0.3),
        make_pair(50.0, 0.5),
    };

    Mat srcImg = imread(getOpenCVExtraDir() + srcImgPath);
    ASSERT_TRUE(!srcImg.empty());

    for (int i = 0; i < 3; i++)
    {
        Mat refRes = imread(getOpenCVExtraDir() + refPaths[i]);
        double sigma_s = refParams[i].first;
        double sigma_r = refParams[i].second;
        ASSERT_TRUE(!refRes.empty());

        Mat res;
        Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, false);
100
        amf->setUseRNG(false);
vludv's avatar
vludv committed
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        amf->filter(srcImg, res, srcImg);
        amf->collectGarbage();

        checkSimilarity(res, refRes);
    }

    for (int i = 0; i < 3; i++)
    {
        Mat refRes = imread(getOpenCVExtraDir() + refOutliersPaths[i]);
        double sigma_s = refOutliersParams[i].first;
        double sigma_r = refOutliersParams[i].second;
        ASSERT_TRUE(!refRes.empty());

        Mat res;
        Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, true);
116
        amf->setUseRNG(false);
vludv's avatar
vludv committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        amf->filter(srcImg, res, srcImg);
        amf->collectGarbage();

        checkSimilarity(res, refRes);
    }
}

typedef tuple<string, string> AMRefTestParams;
typedef TestWithParam<AMRefTestParams> AdaptiveManifoldRefImplTest;

TEST_P(AdaptiveManifoldRefImplTest, RefImplAccuracy)
{
    AMRefTestParams params = GetParam();

    string guideFileName = get<0>(params);
    string srcFileName = get<1>(params);

    Mat guide = imread(getOpenCVExtraDir() + guideFileName);
    Mat src = imread(getOpenCVExtraDir() + srcFileName);
    ASSERT_TRUE(!guide.empty() && !src.empty());

138
    int seed = 10 * (int)guideFileName.length() + (int)srcFileName.length();
vludv's avatar
vludv committed
139 140 141 142 143
    RNG rnd(seed);

    //inconsistent downsample/upsample operations in reference implementation
    Size dstSize((guide.cols + 15) & ~15, (guide.rows + 15) & ~15);

144 145
    resize(guide, guide, dstSize, 0, 0, INTER_LINEAR_EXACT);
    resize(src, src, dstSize, 0, 0, INTER_LINEAR_EXACT);
vludv's avatar
vludv committed
146

147 148 149
    int nThreads = cv::getNumThreads();
    if (nThreads == 1)
        throw SkipTestException("Single thread environment");
150
    for (int iter = 0; iter < 4; iter++)
vludv's avatar
vludv committed
151 152 153 154 155
    {
        double sigma_s = rnd.uniform(1.0, 50.0);
        double sigma_r = rnd.uniform(0.1, 0.9);
        bool adjust_outliers = (iter % 2 == 0);

156
        cv::setNumThreads(nThreads);
vludv's avatar
vludv committed
157 158 159
        Mat res;
        amFilter(guide, src, res, sigma_s, sigma_r, adjust_outliers);

160
        cv::setNumThreads(1);
vludv's avatar
vludv committed
161 162 163 164
        Mat resRef;
        Ptr<AdaptiveManifoldFilter> amf = createAMFilterRefImpl(sigma_s, sigma_r, adjust_outliers);
        amf->filter(src, resRef, guide);

165 166 167 168
        //results of reference implementation may differ on small sigma_s into small isolated region
        //due to low single-precision floating point numbers accuracy
        //therefore the threshold of inf norm was increased
        checkSimilarity(res, resRef, 25);
vludv's avatar
vludv committed
169 170 171
    }
}

172
INSTANTIATE_TEST_CASE_P(TypicalSet, AdaptiveManifoldRefImplTest,
vludv's avatar
vludv committed
173
    Combine(
174 175
    Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png"),
    Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png")
vludv's avatar
vludv committed
176 177
));

178 179

}} // namespace