facerec_video.cpp 6.66 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
 * Released to public domain under terms of the BSD Simplified license.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of the organization nor the names of its contributors
 *     may be used to endorse or promote products derived from this software
 *     without specific prior written permission.
 *
 *   See <http://www.opensource.org/licenses/bsd-license>
 */

#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/objdetect.hpp"

#include <iostream>
#include <fstream>
#include <sstream>

using namespace cv;
using namespace cv::face;
using namespace std;

static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
    std::ifstream file(filename.c_str(), ifstream::in);
    if (!file) {
        string error_message = "No valid input file was given, please check the given filename.";
37
        CV_Error(Error::StsBadArg, error_message);
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    }
    string line, path, classlabel;
    while (getline(file, line)) {
        stringstream liness(line);
        getline(liness, path, separator);
        getline(liness, classlabel);
        if(!path.empty() && !classlabel.empty()) {
            images.push_back(imread(path, 0));
            labels.push_back(atoi(classlabel.c_str()));
        }
    }
}

int main(int argc, const char *argv[]) {
    // Check for valid command line arguments, print usage
    // if no arguments were given.
    if (argc != 4) {
        cout << "usage: " << argv[0] << " </path/to/haar_cascade> </path/to/csv.ext> </path/to/device id>" << endl;
        cout << "\t </path/to/haar_cascade> -- Path to the Haar Cascade for face detection." << endl;
        cout << "\t </path/to/csv.ext> -- Path to the CSV file with the face database." << endl;
        cout << "\t <device id> -- The webcam device id to grab frames from." << endl;
        exit(1);
    }
    // Get the path to your CSV:
    string fn_haar = string(argv[1]);
    string fn_csv = string(argv[2]);
    int deviceId = atoi(argv[3]);
    // These vectors hold the images and corresponding labels:
    vector<Mat> images;
    vector<int> labels;
    // Read in the data (fails if no valid input filename is given, but you'll get an error message):
    try {
        read_csv(fn_csv, images, labels);
    } catch (cv::Exception& e) {
        cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
        // nothing more we can do
        exit(1);
    }
    // Get the height from the first image. We'll need this
    // later in code to reshape the images to their original
    // size AND we need to reshape incoming faces to this size:
    int im_width = images[0].cols;
    int im_height = images[0].rows;
    // Create a FaceRecognizer and train it on the given images:
82
    Ptr<BasicFaceRecognizer> model = createFisherFaceRecognizer();
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    model->train(images, labels);
    // That's it for learning the Face Recognition model. You now
    // need to create the classifier for the task of Face Detection.
    // We are going to use the haar cascade you have specified in the
    // command line arguments:
    //
    CascadeClassifier haar_cascade;
    haar_cascade.load(fn_haar);
    // Get a handle to the Video device:
    VideoCapture cap(deviceId);
    // Check if we can use this device at all:
    if(!cap.isOpened()) {
        cerr << "Capture Device ID " << deviceId << "cannot be opened." << endl;
        return -1;
    }
    // Holds the current frame from the Video device:
    Mat frame;
    for(;;) {
        cap >> frame;
        // Clone the current frame:
        Mat original = frame.clone();
        // Convert the current frame to grayscale:
        Mat gray;
106
        cvtColor(original, gray, COLOR_BGR2GRAY);
107 108 109 110 111 112
        // Find the faces in the frame:
        vector< Rect_<int> > faces;
        haar_cascade.detectMultiScale(gray, faces);
        // At this point you have the position of the faces in
        // faces. Now we'll get the faces, make a prediction and
        // annotate it in the video. Cool or what?
113
        for(size_t i = 0; i < faces.size(); i++) {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            // Process face by face:
            Rect face_i = faces[i];
            // Crop the face from the image. So simple with OpenCV C++:
            Mat face = gray(face_i);
            // Resizing the face is necessary for Eigenfaces and Fisherfaces. You can easily
            // verify this, by reading through the face recognition tutorial coming with OpenCV.
            // Resizing IS NOT NEEDED for Local Binary Patterns Histograms, so preparing the
            // input data really depends on the algorithm used.
            //
            // I strongly encourage you to play around with the algorithms. See which work best
            // in your scenario, LBPH should always be a contender for robust face recognition.
            //
            // Since I am showing the Fisherfaces algorithm here, I also show how to resize the
            // face you have just found:
            Mat face_resized;
            cv::resize(face, face_resized, Size(im_width, im_height), 1.0, 1.0, INTER_CUBIC);
            // Now perform the prediction, see how easy that is:
            int prediction = model->predict(face_resized);
            // And finally write all we've found out to the original image!
            // First of all draw a green rectangle around the detected face:
134
            rectangle(original, face_i, Scalar(0, 255,0), 1);
135 136 137 138 139 140 141
            // Create the text we will annotate the box with:
            string box_text = format("Prediction = %d", prediction);
            // Calculate the position for annotated text (make sure we don't
            // put illegal values in there):
            int pos_x = std::max(face_i.tl().x - 10, 0);
            int pos_y = std::max(face_i.tl().y - 10, 0);
            // And now put it into the image:
142
            putText(original, box_text, Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.0, Scalar(0,255,0), 2);
143 144 145 146 147 148 149 150 151 152 153
        }
        // Show the result:
        imshow("face_recognizer", original);
        // And display it:
        char key = (char) waitKey(20);
        // Exit this loop on escape:
        if(key == 27)
            break;
    }
    return 0;
}