surf.cu 51.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "opencv2/opencv_modules.hpp"

#ifdef HAVE_OPENCV_CUDAARITHM

#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/limits.hpp"
#include "opencv2/core/cuda/saturate_cast.hpp"
#include "opencv2/core/cuda/reduce.hpp"
#include "opencv2/core/cuda/utility.hpp"
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/filters.hpp"

namespace cv { namespace cuda { namespace device
{
    namespace surf
    {
        void loadGlobalConstants(int maxCandidates, int maxFeatures, int img_rows, int img_cols, int nOctaveLayers, float hessianThreshold);
        void loadOctaveConstants(int octave, int layer_rows, int layer_cols);

        void bindImgTex(PtrStepSzb img);
        size_t bindSumTex(PtrStepSz<unsigned int> sum);
        size_t bindMaskSumTex(PtrStepSz<unsigned int> maskSum);

        void icvCalcLayerDetAndTrace_gpu(const PtrStepf& det, const PtrStepf& trace, int img_rows, int img_cols,
            int octave, int nOctaveLayer);

        void icvFindMaximaInLayer_gpu(const PtrStepf& det, const PtrStepf& trace, int4* maxPosBuffer, unsigned int* maxCounter,
            int img_rows, int img_cols, int octave, bool use_mask, int nLayers);

        void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
            float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
            unsigned int* featureCounter);

        void icvCalcOrientation_gpu(const float* featureX, const float* featureY, const float* featureSize, float* featureDir, int nFeatures);

        void compute_descriptors_gpu(PtrStepSz<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures);
    }
}}}

namespace cv { namespace cuda { namespace device
{
    namespace surf
    {
        ////////////////////////////////////////////////////////////////////////
        // Global parameters

        // The maximum number of features (before subpixel interpolation) that memory is reserved for.
        __constant__ int c_max_candidates;
        // The maximum number of features that memory is reserved for.
        __constant__ int c_max_features;
        // The image size.
        __constant__ int c_img_rows;
        __constant__ int c_img_cols;
        // The number of layers.
        __constant__ int c_nOctaveLayers;
        // The hessian threshold.
        __constant__ float c_hessianThreshold;

        // The current octave.
        __constant__ int c_octave;
        // The current layer size.
        __constant__ int c_layer_rows;
        __constant__ int c_layer_cols;

        void loadGlobalConstants(int maxCandidates, int maxFeatures, int img_rows, int img_cols, int nOctaveLayers, float hessianThreshold)
        {
            cudaSafeCall( cudaMemcpyToSymbol(c_max_candidates, &maxCandidates, sizeof(maxCandidates)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_max_features, &maxFeatures, sizeof(maxFeatures)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_img_rows, &img_rows, sizeof(img_rows)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_img_cols, &img_cols, sizeof(img_cols)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_nOctaveLayers, &nOctaveLayers, sizeof(nOctaveLayers)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_hessianThreshold, &hessianThreshold, sizeof(hessianThreshold)) );
        }

        void loadOctaveConstants(int octave, int layer_rows, int layer_cols)
        {
            cudaSafeCall( cudaMemcpyToSymbol(c_octave, &octave, sizeof(octave)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_layer_rows, &layer_rows, sizeof(layer_rows)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_layer_cols, &layer_cols, sizeof(layer_cols)) );
        }

        ////////////////////////////////////////////////////////////////////////
        // Integral image texture

        texture<unsigned char, 2, cudaReadModeElementType> imgTex(0, cudaFilterModePoint, cudaAddressModeClamp);
        texture<unsigned int, 2, cudaReadModeElementType> sumTex(0, cudaFilterModePoint, cudaAddressModeClamp);
        texture<unsigned int, 2, cudaReadModeElementType> maskSumTex(0, cudaFilterModePoint, cudaAddressModeClamp);

        void bindImgTex(PtrStepSzb img)
        {
            bindTexture(&imgTex, img);
        }

        size_t bindSumTex(PtrStepSz<uint> sum)
        {
            size_t offset;
            cudaChannelFormatDesc desc_sum = cudaCreateChannelDesc<uint>();
            cudaSafeCall( cudaBindTexture2D(&offset, sumTex, sum.data, desc_sum, sum.cols, sum.rows, sum.step));
            return offset / sizeof(uint);
        }
        size_t bindMaskSumTex(PtrStepSz<uint> maskSum)
        {
            size_t offset;
            cudaChannelFormatDesc desc_sum = cudaCreateChannelDesc<uint>();
            cudaSafeCall( cudaBindTexture2D(&offset, maskSumTex, maskSum.data, desc_sum, maskSum.cols, maskSum.rows, maskSum.step));
            return offset / sizeof(uint);
        }

        template <int N> __device__ float icvCalcHaarPatternSum(const float src[][5], int oldSize, int newSize, int y, int x)
        {
153
        #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 200
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
            typedef double real_t;
        #else
            typedef float  real_t;
        #endif

            float ratio = (float)newSize / oldSize;

            real_t d = 0;

            #pragma unroll
            for (int k = 0; k < N; ++k)
            {
                int dx1 = __float2int_rn(ratio * src[k][0]);
                int dy1 = __float2int_rn(ratio * src[k][1]);
                int dx2 = __float2int_rn(ratio * src[k][2]);
                int dy2 = __float2int_rn(ratio * src[k][3]);

                real_t t = 0;
                t += tex2D(sumTex, x + dx1, y + dy1);
                t -= tex2D(sumTex, x + dx1, y + dy2);
                t -= tex2D(sumTex, x + dx2, y + dy1);
                t += tex2D(sumTex, x + dx2, y + dy2);

                d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
            }

            return (float)d;
        }

        ////////////////////////////////////////////////////////////////////////
        // Hessian

        __constant__ float c_DX [3][5] = { {0, 2, 3, 7, 1}, {3, 2, 6, 7, -2}, {6, 2, 9, 7, 1} };
        __constant__ float c_DY [3][5] = { {2, 0, 7, 3, 1}, {2, 3, 7, 6, -2}, {2, 6, 7, 9, 1} };
        __constant__ float c_DXY[4][5] = { {1, 1, 4, 4, 1}, {5, 1, 8, 4, -1}, {1, 5, 4, 8, -1}, {5, 5, 8, 8, 1} };

        __host__ __device__ __forceinline__ int calcSize(int octave, int layer)
        {
            /* Wavelet size at first layer of first octave. */
            const int HAAR_SIZE0 = 9;

            /* Wavelet size increment between layers. This should be an even number,
             such that the wavelet sizes in an octave are either all even or all odd.
             This ensures that when looking for the neighbours of a sample, the layers
             above and below are aligned correctly. */
            const int HAAR_SIZE_INC = 6;

            return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
        }

        __global__ void icvCalcLayerDetAndTrace(PtrStepf det, PtrStepf trace)
        {
            // Determine the indices
            const int gridDim_y = gridDim.y / (c_nOctaveLayers + 2);
            const int blockIdx_y = blockIdx.y % gridDim_y;
            const int blockIdx_z = blockIdx.y / gridDim_y;

            const int j = threadIdx.x + blockIdx.x * blockDim.x;
            const int i = threadIdx.y + blockIdx_y * blockDim.y;
            const int layer = blockIdx_z;

            const int size = calcSize(c_octave, layer);

            const int samples_i = 1 + ((c_img_rows - size) >> c_octave);
            const int samples_j = 1 + ((c_img_cols - size) >> c_octave);

            // Ignore pixels where some of the kernel is outside the image
            const int margin = (size >> 1) >> c_octave;

            if (size <= c_img_rows && size <= c_img_cols && i < samples_i && j < samples_j)
            {
                const float dx  = icvCalcHaarPatternSum<3>(c_DX , 9, size, (i << c_octave), (j << c_octave));
                const float dy  = icvCalcHaarPatternSum<3>(c_DY , 9, size, (i << c_octave), (j << c_octave));
                const float dxy = icvCalcHaarPatternSum<4>(c_DXY, 9, size, (i << c_octave), (j << c_octave));

                det.ptr(layer * c_layer_rows + i + margin)[j + margin] = dx * dy - 0.81f * dxy * dxy;
                trace.ptr(layer * c_layer_rows + i + margin)[j + margin] = dx + dy;
            }
        }

        void icvCalcLayerDetAndTrace_gpu(const PtrStepf& det, const PtrStepf& trace, int img_rows, int img_cols,
            int octave, int nOctaveLayers)
        {
            const int min_size = calcSize(octave, 0);
            const int max_samples_i = 1 + ((img_rows - min_size) >> octave);
            const int max_samples_j = 1 + ((img_cols - min_size) >> octave);

            dim3 threads(16, 16);

            dim3 grid;
            grid.x = divUp(max_samples_j, threads.x);
            grid.y = divUp(max_samples_i, threads.y) * (nOctaveLayers + 2);

            icvCalcLayerDetAndTrace<<<grid, threads>>>(det, trace);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        ////////////////////////////////////////////////////////////////////////
        // NONMAX

        __constant__ float c_DM[5] = {0, 0, 9, 9, 1};

        struct WithMask
        {
            static __device__ bool check(int sum_i, int sum_j, int size)
            {
                float ratio = (float)size / 9.0f;

                float d = 0;

                int dx1 = __float2int_rn(ratio * c_DM[0]);
                int dy1 = __float2int_rn(ratio * c_DM[1]);
                int dx2 = __float2int_rn(ratio * c_DM[2]);
                int dy2 = __float2int_rn(ratio * c_DM[3]);

                float t = 0;
                t += tex2D(maskSumTex, sum_j + dx1, sum_i + dy1);
                t -= tex2D(maskSumTex, sum_j + dx1, sum_i + dy2);
                t -= tex2D(maskSumTex, sum_j + dx2, sum_i + dy1);
                t += tex2D(maskSumTex, sum_j + dx2, sum_i + dy2);

                d += t * c_DM[4] / ((dx2 - dx1) * (dy2 - dy1));

                return (d >= 0.5f);
            }
        };

        template <typename Mask>
        __global__ void icvFindMaximaInLayer(const PtrStepf det, const PtrStepf trace, int4* maxPosBuffer,
            unsigned int* maxCounter)
        {
287
            #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 110
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

            extern __shared__ float N9[];

            // The hidx variables are the indices to the hessian buffer.
            const int gridDim_y = gridDim.y / c_nOctaveLayers;
            const int blockIdx_y = blockIdx.y % gridDim_y;
            const int blockIdx_z = blockIdx.y / gridDim_y;

            const int layer = blockIdx_z + 1;

            const int size = calcSize(c_octave, layer);

            // Ignore pixels without a 3x3x3 neighbourhood in the layer above
            const int margin = ((calcSize(c_octave, layer + 1) >> 1) >> c_octave) + 1;

            const int j = threadIdx.x + blockIdx.x * (blockDim.x - 2) + margin - 1;
            const int i = threadIdx.y + blockIdx_y * (blockDim.y - 2) + margin - 1;

            // Is this thread within the hessian buffer?
            const int zoff = blockDim.x * blockDim.y;
            const int localLin = threadIdx.x + threadIdx.y * blockDim.x + zoff;
            N9[localLin - zoff] = det.ptr(c_layer_rows * (layer - 1) + ::min(::max(i, 0), c_img_rows - 1))[::min(::max(j, 0), c_img_cols - 1)];
            N9[localLin       ] = det.ptr(c_layer_rows * (layer    ) + ::min(::max(i, 0), c_img_rows - 1))[::min(::max(j, 0), c_img_cols - 1)];
            N9[localLin + zoff] = det.ptr(c_layer_rows * (layer + 1) + ::min(::max(i, 0), c_img_rows - 1))[::min(::max(j, 0), c_img_cols - 1)];
            __syncthreads();

            if (i < c_layer_rows - margin && j < c_layer_cols - margin && threadIdx.x > 0 && threadIdx.x < blockDim.x - 1 && threadIdx.y > 0 && threadIdx.y < blockDim.y - 1)
            {
                float val0 = N9[localLin];

                if (val0 > c_hessianThreshold)
                {
                    // Coordinates for the start of the wavelet in the sum image. There
                    // is some integer division involved, so don't try to simplify this
                    // (cancel out sampleStep) without checking the result is the same
                    const int sum_i = (i - ((size >> 1) >> c_octave)) << c_octave;
                    const int sum_j = (j - ((size >> 1) >> c_octave)) << c_octave;

                    if (Mask::check(sum_i, sum_j, size))
                    {
                        // Check to see if we have a max (in its 26 neighbours)
                        const bool condmax = val0 > N9[localLin - 1 - blockDim.x - zoff]
                        &&                   val0 > N9[localLin     - blockDim.x - zoff]
                        &&                   val0 > N9[localLin + 1 - blockDim.x - zoff]
                        &&                   val0 > N9[localLin - 1              - zoff]
                        &&                   val0 > N9[localLin                  - zoff]
                        &&                   val0 > N9[localLin + 1              - zoff]
                        &&                   val0 > N9[localLin - 1 + blockDim.x - zoff]
                        &&                   val0 > N9[localLin     + blockDim.x - zoff]
                        &&                   val0 > N9[localLin + 1 + blockDim.x - zoff]

                        &&                   val0 > N9[localLin - 1 - blockDim.x]
                        &&                   val0 > N9[localLin     - blockDim.x]
                        &&                   val0 > N9[localLin + 1 - blockDim.x]
                        &&                   val0 > N9[localLin - 1             ]
                        &&                   val0 > N9[localLin + 1             ]
                        &&                   val0 > N9[localLin - 1 + blockDim.x]
                        &&                   val0 > N9[localLin     + blockDim.x]
                        &&                   val0 > N9[localLin + 1 + blockDim.x]

                        &&                   val0 > N9[localLin - 1 - blockDim.x + zoff]
                        &&                   val0 > N9[localLin     - blockDim.x + zoff]
                        &&                   val0 > N9[localLin + 1 - blockDim.x + zoff]
                        &&                   val0 > N9[localLin - 1              + zoff]
                        &&                   val0 > N9[localLin                  + zoff]
                        &&                   val0 > N9[localLin + 1              + zoff]
                        &&                   val0 > N9[localLin - 1 + blockDim.x + zoff]
                        &&                   val0 > N9[localLin     + blockDim.x + zoff]
                        &&                   val0 > N9[localLin + 1 + blockDim.x + zoff]
                        ;

                        if(condmax)
                        {
                            unsigned int ind = atomicInc(maxCounter,(unsigned int) -1);

                            if (ind < c_max_candidates)
                            {
                                const int laplacian = (int) copysignf(1.0f, trace.ptr(layer * c_layer_rows + i)[j]);

                                maxPosBuffer[ind] = make_int4(j, i, layer, laplacian);
                            }
                        }
                    }
                }
            }

            #endif
        }

        void icvFindMaximaInLayer_gpu(const PtrStepf& det, const PtrStepf& trace, int4* maxPosBuffer, unsigned int* maxCounter,
            int img_rows, int img_cols, int octave, bool use_mask, int nOctaveLayers)
        {
            const int layer_rows = img_rows >> octave;
            const int layer_cols = img_cols >> octave;

            const int min_margin = ((calcSize(octave, 2) >> 1) >> octave) + 1;

            dim3 threads(16, 16);

            dim3 grid;
            grid.x = divUp(layer_cols - 2 * min_margin, threads.x - 2);
            grid.y = divUp(layer_rows - 2 * min_margin, threads.y - 2) * nOctaveLayers;

            const size_t smem_size = threads.x * threads.y * 3 * sizeof(float);

            if (use_mask)
                icvFindMaximaInLayer<WithMask><<<grid, threads, smem_size>>>(det, trace, maxPosBuffer, maxCounter);
            else
                icvFindMaximaInLayer<WithOutMask><<<grid, threads, smem_size>>>(det, trace, maxPosBuffer, maxCounter);

            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        ////////////////////////////////////////////////////////////////////////
        // INTERPOLATION

        __global__ void icvInterpolateKeypoint(const PtrStepf det, const int4* maxPosBuffer,
            float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
            unsigned int* featureCounter)
        {
410
            #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 110
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

            const int4 maxPos = maxPosBuffer[blockIdx.x];

            const int j = maxPos.x - 1 + threadIdx.x;
            const int i = maxPos.y - 1 + threadIdx.y;
            const int layer = maxPos.z - 1 + threadIdx.z;

            __shared__ float N9[3][3][3];

            N9[threadIdx.z][threadIdx.y][threadIdx.x] = det.ptr(c_layer_rows * layer + i)[j];
            __syncthreads();

            if (threadIdx.x == 0 && threadIdx.y == 0 && threadIdx.z == 0)
            {
                __shared__ float dD[3];

                //dx
                dD[0] = -0.5f * (N9[1][1][2] - N9[1][1][0]);
                //dy
                dD[1] = -0.5f * (N9[1][2][1] - N9[1][0][1]);
                //ds
                dD[2] = -0.5f * (N9[2][1][1] - N9[0][1][1]);

                __shared__ float H[3][3];

                //dxx
                H[0][0] = N9[1][1][0] - 2.0f * N9[1][1][1] + N9[1][1][2];
                //dxy
                H[0][1]= 0.25f * (N9[1][2][2] - N9[1][2][0] - N9[1][0][2] + N9[1][0][0]);
                //dxs
                H[0][2]= 0.25f * (N9[2][1][2] - N9[2][1][0] - N9[0][1][2] + N9[0][1][0]);
                //dyx = dxy
                H[1][0] = H[0][1];
                //dyy
                H[1][1] = N9[1][0][1] - 2.0f * N9[1][1][1] + N9[1][2][1];
                //dys
                H[1][2]= 0.25f * (N9[2][2][1] - N9[2][0][1] - N9[0][2][1] + N9[0][0][1]);
                //dsx = dxs
                H[2][0] = H[0][2];
                //dsy = dys
                H[2][1] = H[1][2];
                //dss
                H[2][2] = N9[0][1][1] - 2.0f * N9[1][1][1] + N9[2][1][1];

                __shared__ float x[3];

                if (solve3x3(H, dD, x))
                {
                    if (::fabs(x[0]) <= 1.f && ::fabs(x[1]) <= 1.f && ::fabs(x[2]) <= 1.f)
                    {
                        // if the step is within the interpolation region, perform it

                        const int size = calcSize(c_octave, maxPos.z);

                        const int sum_i = (maxPos.y - ((size >> 1) >> c_octave)) << c_octave;
                        const int sum_j = (maxPos.x - ((size >> 1) >> c_octave)) << c_octave;

                        const float center_i = sum_i + (float)(size - 1) / 2;
                        const float center_j = sum_j + (float)(size - 1) / 2;

                        const float px = center_j + x[0] * (1 << c_octave);
                        const float py = center_i + x[1] * (1 << c_octave);

                        const int ds = size - calcSize(c_octave, maxPos.z - 1);
                        const float psize = roundf(size + x[2] * ds);

                        /* The sampling intervals and wavelet sized for selecting an orientation
                         and building the keypoint descriptor are defined relative to 's' */
                        const float s = psize * 1.2f / 9.0f;

                        /* To find the dominant orientation, the gradients in x and y are
                         sampled in a circle of radius 6s using wavelets of size 4s.
                         We ensure the gradient wavelet size is even to ensure the
                         wavelet pattern is balanced and symmetric around its center */
                        const int grad_wav_size = 2 * __float2int_rn(2.0f * s);

                        // check when grad_wav_size is too big
                        if ((c_img_rows + 1) >= grad_wav_size && (c_img_cols + 1) >= grad_wav_size)
                        {
                            // Get a new feature index.
                            unsigned int ind = atomicInc(featureCounter, (unsigned int)-1);

                            if (ind < c_max_features)
                            {
                                featureX[ind] = px;
                                featureY[ind] = py;
                                featureLaplacian[ind] = maxPos.w;
                                featureOctave[ind] = c_octave;
                                featureSize[ind] = psize;
                                featureHessian[ind] = N9[1][1][1];
                            }
                        } // grad_wav_size check
                    } // If the subpixel interpolation worked
                }
            } // If this is thread 0.

            #endif
        }

        void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
            float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
            unsigned int* featureCounter)
        {
            dim3 threads;
            threads.x = 3;
            threads.y = 3;
            threads.z = 3;

            dim3 grid;
            grid.x = maxCounter;

            icvInterpolateKeypoint<<<grid, threads>>>(det, maxPosBuffer, featureX, featureY, featureLaplacian, featureOctave, featureSize, featureHessian, featureCounter);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        ////////////////////////////////////////////////////////////////////////
        // Orientation

        #define ORI_SEARCH_INC 5
        #define ORI_WIN        60
        #define ORI_SAMPLES    113

        __constant__ float c_aptX[ORI_SAMPLES] = {-6, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6};
        __constant__ float c_aptY[ORI_SAMPLES] = {0, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, 0};
        __constant__ float c_aptW[ORI_SAMPLES] = {0.001455130288377404f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f, 0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f, 0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f, 0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.001455130288377404f};

        __constant__ float c_NX[2][5] = {{0, 0, 2, 4, -1}, {2, 0, 4, 4, 1}};
        __constant__ float c_NY[2][5] = {{0, 0, 4, 2, 1}, {0, 2, 4, 4, -1}};

        __global__ void icvCalcOrientation(const float* featureX, const float* featureY, const float* featureSize, float* featureDir)
        {
            __shared__ float s_X[128];
            __shared__ float s_Y[128];
            __shared__ float s_angle[128];

            __shared__ float s_sumx[32 * 4];
            __shared__ float s_sumy[32 * 4];

            /* The sampling intervals and wavelet sized for selecting an orientation
             and building the keypoint descriptor are defined relative to 's' */
            const float s = featureSize[blockIdx.x] * 1.2f / 9.0f;

            /* To find the dominant orientation, the gradients in x and y are
             sampled in a circle of radius 6s using wavelets of size 4s.
             We ensure the gradient wavelet size is even to ensure the
             wavelet pattern is balanced and symmetric around its center */
            const int grad_wav_size = 2 * __float2int_rn(2.0f * s);

            // check when grad_wav_size is too big
            if ((c_img_rows + 1) < grad_wav_size || (c_img_cols + 1) < grad_wav_size)
                return;

            // Calc X, Y, angle and store it to shared memory
            const int tid = threadIdx.y * blockDim.x + threadIdx.x;

            float X = 0.0f, Y = 0.0f, angle = 0.0f;

            if (tid < ORI_SAMPLES)
            {
                const float margin = (float)(grad_wav_size - 1) / 2.0f;
                const int x = __float2int_rn(featureX[blockIdx.x] + c_aptX[tid] * s - margin);
                const int y = __float2int_rn(featureY[blockIdx.x] + c_aptY[tid] * s - margin);

                if (y >= 0 && y < (c_img_rows + 1) - grad_wav_size &&
                    x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
                {
                    X = c_aptW[tid] * icvCalcHaarPatternSum<2>(c_NX, 4, grad_wav_size, y, x);
                    Y = c_aptW[tid] * icvCalcHaarPatternSum<2>(c_NY, 4, grad_wav_size, y, x);

                    angle = atan2f(Y, X);
                    if (angle < 0)
                        angle += 2.0f * CV_PI_F;
                    angle *= 180.0f / CV_PI_F;
                }
            }
            s_X[tid] = X;
            s_Y[tid] = Y;
            s_angle[tid] = angle;
            __syncthreads();

            float bestx = 0, besty = 0, best_mod = 0;

595
        #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 200
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
            #pragma unroll
        #endif
            for (int i = 0; i < 18; ++i)
            {
                const int dir = (i * 4 + threadIdx.y) * ORI_SEARCH_INC;

                float sumx = 0.0f, sumy = 0.0f;
                int d = ::abs(__float2int_rn(s_angle[threadIdx.x]) - dir);
                if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
                {
                    sumx = s_X[threadIdx.x];
                    sumy = s_Y[threadIdx.x];
                }
                d = ::abs(__float2int_rn(s_angle[threadIdx.x + 32]) - dir);
                if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
                {
                    sumx += s_X[threadIdx.x + 32];
                    sumy += s_Y[threadIdx.x + 32];
                }
                d = ::abs(__float2int_rn(s_angle[threadIdx.x + 64]) - dir);
                if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
                {
                    sumx += s_X[threadIdx.x + 64];
                    sumy += s_Y[threadIdx.x + 64];
                }
                d = ::abs(__float2int_rn(s_angle[threadIdx.x + 96]) - dir);
                if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
                {
                    sumx += s_X[threadIdx.x + 96];
                    sumy += s_Y[threadIdx.x + 96];
                }

                plus<float> op;
                device::reduce<32>(smem_tuple(s_sumx + threadIdx.y * 32, s_sumy + threadIdx.y * 32),
                                   thrust::tie(sumx, sumy), threadIdx.x, thrust::make_tuple(op, op));

                const float temp_mod = sumx * sumx + sumy * sumy;
                if (temp_mod > best_mod)
                {
                    best_mod = temp_mod;
                    bestx = sumx;
                    besty = sumy;
                }

                __syncthreads();
            }

            if (threadIdx.x == 0)
            {
                s_X[threadIdx.y] = bestx;
                s_Y[threadIdx.y] = besty;
                s_angle[threadIdx.y] = best_mod;
            }
            __syncthreads();

            if (threadIdx.x == 0 && threadIdx.y == 0)
            {
                int bestIdx = 0;

                if (s_angle[1] > s_angle[bestIdx])
                    bestIdx = 1;
                if (s_angle[2] > s_angle[bestIdx])
                    bestIdx = 2;
                if (s_angle[3] > s_angle[bestIdx])
                    bestIdx = 3;

                float kp_dir = atan2f(s_Y[bestIdx], s_X[bestIdx]);
                if (kp_dir < 0)
                    kp_dir += 2.0f * CV_PI_F;
                kp_dir *= 180.0f / CV_PI_F;

                kp_dir = 360.0f - kp_dir;
                if (::fabsf(kp_dir - 360.f) < numeric_limits<float>::epsilon())
                    kp_dir = 0.f;

                featureDir[blockIdx.x] = kp_dir;
            }
        }

        #undef ORI_SEARCH_INC
        #undef ORI_WIN
        #undef ORI_SAMPLES

        void icvCalcOrientation_gpu(const float* featureX, const float* featureY, const float* featureSize, float* featureDir, int nFeatures)
        {
            dim3 threads;
            threads.x = 32;
            threads.y = 4;

            dim3 grid;
            grid.x = nFeatures;

            icvCalcOrientation<<<grid, threads>>>(featureX, featureY, featureSize, featureDir);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        ////////////////////////////////////////////////////////////////////////
        // Descriptors

        #define PATCH_SZ 20

        __constant__ float c_DW[PATCH_SZ * PATCH_SZ] =
        {
            3.695352233989979e-006f, 8.444558261544444e-006f, 1.760426494001877e-005f, 3.34794785885606e-005f, 5.808438800158911e-005f, 9.193058212986216e-005f, 0.0001327334757661447f, 0.0001748319627949968f, 0.0002100782439811155f, 0.0002302826324012131f, 0.0002302826324012131f, 0.0002100782439811155f, 0.0001748319627949968f, 0.0001327334757661447f, 9.193058212986216e-005f, 5.808438800158911e-005f, 3.34794785885606e-005f, 1.760426494001877e-005f, 8.444558261544444e-006f, 3.695352233989979e-006f,
            8.444558261544444e-006f, 1.929736572492402e-005f, 4.022897701361217e-005f, 7.650675252079964e-005f, 0.0001327334903180599f, 0.0002100782585330308f, 0.0003033203829545528f, 0.0003995231236331165f, 0.0004800673632416874f, 0.0005262381164357066f, 0.0005262381164357066f, 0.0004800673632416874f, 0.0003995231236331165f, 0.0003033203829545528f, 0.0002100782585330308f, 0.0001327334903180599f, 7.650675252079964e-005f, 4.022897701361217e-005f, 1.929736572492402e-005f, 8.444558261544444e-006f,
            1.760426494001877e-005f, 4.022897701361217e-005f, 8.386484114453197e-005f, 0.0001594926579855382f, 0.0002767078403849155f, 0.0004379475140012801f, 0.0006323281559161842f, 0.0008328808471560478f, 0.001000790391117334f, 0.001097041997127235f, 0.001097041997127235f, 0.001000790391117334f, 0.0008328808471560478f, 0.0006323281559161842f, 0.0004379475140012801f, 0.0002767078403849155f, 0.0001594926579855382f, 8.386484114453197e-005f, 4.022897701361217e-005f, 1.760426494001877e-005f,
            3.34794785885606e-005f, 7.650675252079964e-005f, 0.0001594926579855382f, 0.0003033203247468919f, 0.0005262380582280457f, 0.0008328807889483869f, 0.001202550483867526f, 0.001583957928232849f, 0.001903285388834775f, 0.002086334861814976f, 0.002086334861814976f, 0.001903285388834775f, 0.001583957928232849f, 0.001202550483867526f, 0.0008328807889483869f, 0.0005262380582280457f, 0.0003033203247468919f, 0.0001594926579855382f, 7.650675252079964e-005f, 3.34794785885606e-005f,
            5.808438800158911e-005f, 0.0001327334903180599f, 0.0002767078403849155f, 0.0005262380582280457f, 0.0009129836107604206f, 0.001444985857233405f, 0.002086335094645619f, 0.002748048631474376f, 0.00330205773934722f, 0.003619635012000799f, 0.003619635012000799f, 0.00330205773934722f, 0.002748048631474376f, 0.002086335094645619f, 0.001444985857233405f, 0.0009129836107604206f, 0.0005262380582280457f, 0.0002767078403849155f, 0.0001327334903180599f, 5.808438800158911e-005f,
            9.193058212986216e-005f, 0.0002100782585330308f, 0.0004379475140012801f, 0.0008328807889483869f, 0.001444985857233405f, 0.002286989474669099f, 0.00330205773934722f, 0.004349356517195702f, 0.00522619066759944f, 0.005728822201490402f, 0.005728822201490402f, 0.00522619066759944f, 0.004349356517195702f, 0.00330205773934722f, 0.002286989474669099f, 0.001444985857233405f, 0.0008328807889483869f, 0.0004379475140012801f, 0.0002100782585330308f, 9.193058212986216e-005f,
            0.0001327334757661447f, 0.0003033203829545528f, 0.0006323281559161842f, 0.001202550483867526f, 0.002086335094645619f, 0.00330205773934722f, 0.004767658654600382f, 0.006279794964939356f, 0.007545807864516974f, 0.008271530270576477f, 0.008271530270576477f, 0.007545807864516974f, 0.006279794964939356f, 0.004767658654600382f, 0.00330205773934722f, 0.002086335094645619f, 0.001202550483867526f, 0.0006323281559161842f, 0.0003033203829545528f, 0.0001327334757661447f,
            0.0001748319627949968f, 0.0003995231236331165f, 0.0008328808471560478f, 0.001583957928232849f, 0.002748048631474376f, 0.004349356517195702f, 0.006279794964939356f, 0.008271529339253902f, 0.009939077310264111f, 0.01089497376233339f, 0.01089497376233339f, 0.009939077310264111f, 0.008271529339253902f, 0.006279794964939356f, 0.004349356517195702f, 0.002748048631474376f, 0.001583957928232849f, 0.0008328808471560478f, 0.0003995231236331165f, 0.0001748319627949968f,
            0.0002100782439811155f, 0.0004800673632416874f, 0.001000790391117334f, 0.001903285388834775f, 0.00330205773934722f, 0.00522619066759944f, 0.007545807864516974f, 0.009939077310264111f, 0.01194280479103327f, 0.01309141051024199f, 0.01309141051024199f, 0.01194280479103327f, 0.009939077310264111f, 0.007545807864516974f, 0.00522619066759944f, 0.00330205773934722f, 0.001903285388834775f, 0.001000790391117334f, 0.0004800673632416874f, 0.0002100782439811155f,
            0.0002302826324012131f, 0.0005262381164357066f, 0.001097041997127235f, 0.002086334861814976f, 0.003619635012000799f, 0.005728822201490402f, 0.008271530270576477f, 0.01089497376233339f, 0.01309141051024199f, 0.01435048412531614f, 0.01435048412531614f, 0.01309141051024199f, 0.01089497376233339f, 0.008271530270576477f, 0.005728822201490402f, 0.003619635012000799f, 0.002086334861814976f, 0.001097041997127235f, 0.0005262381164357066f, 0.0002302826324012131f,
            0.0002302826324012131f, 0.0005262381164357066f, 0.001097041997127235f, 0.002086334861814976f, 0.003619635012000799f, 0.005728822201490402f, 0.008271530270576477f, 0.01089497376233339f, 0.01309141051024199f, 0.01435048412531614f, 0.01435048412531614f, 0.01309141051024199f, 0.01089497376233339f, 0.008271530270576477f, 0.005728822201490402f, 0.003619635012000799f, 0.002086334861814976f, 0.001097041997127235f, 0.0005262381164357066f, 0.0002302826324012131f,
            0.0002100782439811155f, 0.0004800673632416874f, 0.001000790391117334f, 0.001903285388834775f, 0.00330205773934722f, 0.00522619066759944f, 0.007545807864516974f, 0.009939077310264111f, 0.01194280479103327f, 0.01309141051024199f, 0.01309141051024199f, 0.01194280479103327f, 0.009939077310264111f, 0.007545807864516974f, 0.00522619066759944f, 0.00330205773934722f, 0.001903285388834775f, 0.001000790391117334f, 0.0004800673632416874f, 0.0002100782439811155f,
            0.0001748319627949968f, 0.0003995231236331165f, 0.0008328808471560478f, 0.001583957928232849f, 0.002748048631474376f, 0.004349356517195702f, 0.006279794964939356f, 0.008271529339253902f, 0.009939077310264111f, 0.01089497376233339f, 0.01089497376233339f, 0.009939077310264111f, 0.008271529339253902f, 0.006279794964939356f, 0.004349356517195702f, 0.002748048631474376f, 0.001583957928232849f, 0.0008328808471560478f, 0.0003995231236331165f, 0.0001748319627949968f,
            0.0001327334757661447f, 0.0003033203829545528f, 0.0006323281559161842f, 0.001202550483867526f, 0.002086335094645619f, 0.00330205773934722f, 0.004767658654600382f, 0.006279794964939356f, 0.007545807864516974f, 0.008271530270576477f, 0.008271530270576477f, 0.007545807864516974f, 0.006279794964939356f, 0.004767658654600382f, 0.00330205773934722f, 0.002086335094645619f, 0.001202550483867526f, 0.0006323281559161842f, 0.0003033203829545528f, 0.0001327334757661447f,
            9.193058212986216e-005f, 0.0002100782585330308f, 0.0004379475140012801f, 0.0008328807889483869f, 0.001444985857233405f, 0.002286989474669099f, 0.00330205773934722f, 0.004349356517195702f, 0.00522619066759944f, 0.005728822201490402f, 0.005728822201490402f, 0.00522619066759944f, 0.004349356517195702f, 0.00330205773934722f, 0.002286989474669099f, 0.001444985857233405f, 0.0008328807889483869f, 0.0004379475140012801f, 0.0002100782585330308f, 9.193058212986216e-005f,
            5.808438800158911e-005f, 0.0001327334903180599f, 0.0002767078403849155f, 0.0005262380582280457f, 0.0009129836107604206f, 0.001444985857233405f, 0.002086335094645619f, 0.002748048631474376f, 0.00330205773934722f, 0.003619635012000799f, 0.003619635012000799f, 0.00330205773934722f, 0.002748048631474376f, 0.002086335094645619f, 0.001444985857233405f, 0.0009129836107604206f, 0.0005262380582280457f, 0.0002767078403849155f, 0.0001327334903180599f, 5.808438800158911e-005f,
            3.34794785885606e-005f, 7.650675252079964e-005f, 0.0001594926579855382f, 0.0003033203247468919f, 0.0005262380582280457f, 0.0008328807889483869f, 0.001202550483867526f, 0.001583957928232849f, 0.001903285388834775f, 0.002086334861814976f, 0.002086334861814976f, 0.001903285388834775f, 0.001583957928232849f, 0.001202550483867526f, 0.0008328807889483869f, 0.0005262380582280457f, 0.0003033203247468919f, 0.0001594926579855382f, 7.650675252079964e-005f, 3.34794785885606e-005f,
            1.760426494001877e-005f, 4.022897701361217e-005f, 8.386484114453197e-005f, 0.0001594926579855382f, 0.0002767078403849155f, 0.0004379475140012801f, 0.0006323281559161842f, 0.0008328808471560478f, 0.001000790391117334f, 0.001097041997127235f, 0.001097041997127235f, 0.001000790391117334f, 0.0008328808471560478f, 0.0006323281559161842f, 0.0004379475140012801f, 0.0002767078403849155f, 0.0001594926579855382f, 8.386484114453197e-005f, 4.022897701361217e-005f, 1.760426494001877e-005f,
            8.444558261544444e-006f, 1.929736572492402e-005f, 4.022897701361217e-005f, 7.650675252079964e-005f, 0.0001327334903180599f, 0.0002100782585330308f, 0.0003033203829545528f, 0.0003995231236331165f, 0.0004800673632416874f, 0.0005262381164357066f, 0.0005262381164357066f, 0.0004800673632416874f, 0.0003995231236331165f, 0.0003033203829545528f, 0.0002100782585330308f, 0.0001327334903180599f, 7.650675252079964e-005f, 4.022897701361217e-005f, 1.929736572492402e-005f, 8.444558261544444e-006f,
            3.695352233989979e-006f, 8.444558261544444e-006f, 1.760426494001877e-005f, 3.34794785885606e-005f, 5.808438800158911e-005f, 9.193058212986216e-005f, 0.0001327334757661447f, 0.0001748319627949968f, 0.0002100782439811155f, 0.0002302826324012131f, 0.0002302826324012131f, 0.0002100782439811155f, 0.0001748319627949968f, 0.0001327334757661447f, 9.193058212986216e-005f, 5.808438800158911e-005f, 3.34794785885606e-005f, 1.760426494001877e-005f, 8.444558261544444e-006f, 3.695352233989979e-006f
        };

        struct WinReader
        {
            typedef uchar elem_type;

            __device__ __forceinline__ uchar operator ()(int i, int j) const
            {
                float pixel_x = centerX + (win_offset + j) * cos_dir + (win_offset + i) * sin_dir;
                float pixel_y = centerY - (win_offset + j) * sin_dir + (win_offset + i) * cos_dir;

                return tex2D(imgTex, pixel_x, pixel_y);
            }

            float centerX;
            float centerY;
            float win_offset;
            float cos_dir;
            float sin_dir;
            int width;
            int height;
        };

        __device__ void calc_dx_dy(const float* featureX, const float* featureY, const float* featureSize, const float* featureDir,
                                   float& dx, float& dy);

        __device__ void calc_dx_dy(const float* featureX, const float* featureY, const float* featureSize, const float* featureDir,
                                   float& dx, float& dy)
        {
            __shared__ float s_PATCH[PATCH_SZ + 1][PATCH_SZ + 1];

            dx = dy = 0.0f;

            WinReader win;

            win.centerX = featureX[blockIdx.x];
            win.centerY = featureY[blockIdx.x];

            // The sampling intervals and wavelet sized for selecting an orientation
            // and building the keypoint descriptor are defined relative to 's'
            const float s = featureSize[blockIdx.x] * 1.2f / 9.0f;

            // Extract a window of pixels around the keypoint of size 20s
            const int win_size = (int)((PATCH_SZ + 1) * s);

            win.width = win.height = win_size;

            // Nearest neighbour version (faster)
            win.win_offset = -(win_size - 1.0f) / 2.0f;

            float descriptor_dir = 360.0f - featureDir[blockIdx.x];
            if (::fabsf(descriptor_dir - 360.f) < numeric_limits<float>::epsilon())
                descriptor_dir = 0.f;
            descriptor_dir *= CV_PI_F / 180.0f;
            sincosf(descriptor_dir, &win.sin_dir, &win.cos_dir);

            const int tid = threadIdx.y * blockDim.x + threadIdx.x;

            const int xLoadInd = tid % (PATCH_SZ + 1);
            const int yLoadInd = tid / (PATCH_SZ + 1);

            if (yLoadInd < (PATCH_SZ + 1))
            {
                if (s > 1)
                {
                    AreaFilter<WinReader> filter(win, s, s);
                    s_PATCH[yLoadInd][xLoadInd] = filter(yLoadInd, xLoadInd);
                }
                else
                {
                    LinearFilter<WinReader> filter(win);
                    s_PATCH[yLoadInd][xLoadInd] = filter(yLoadInd * s, xLoadInd * s);
                }
            }

            __syncthreads();

            const int xPatchInd = threadIdx.x % 5;
            const int yPatchInd = threadIdx.x / 5;

            if (yPatchInd < 5)
            {
                const int xBlockInd = threadIdx.y % 4;
                const int yBlockInd = threadIdx.y / 4;

                const int xInd = xBlockInd * 5 + xPatchInd;
                const int yInd = yBlockInd * 5 + yPatchInd;

                const float dw = c_DW[yInd * PATCH_SZ + xInd];

                dx = (s_PATCH[yInd    ][xInd + 1] - s_PATCH[yInd][xInd] + s_PATCH[yInd + 1][xInd + 1] - s_PATCH[yInd + 1][xInd    ]) * dw;
                dy = (s_PATCH[yInd + 1][xInd    ] - s_PATCH[yInd][xInd] + s_PATCH[yInd + 1][xInd + 1] - s_PATCH[yInd    ][xInd + 1]) * dw;
            }
        }

        __global__ void compute_descriptors_64(PtrStep<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
        {
            __shared__ float smem[32 * 16];

            float* sRow = smem + threadIdx.y * 32;

            float dx, dy;
            calc_dx_dy(featureX, featureY, featureSize, featureDir, dx, dy);

            float dxabs = ::fabsf(dx);
            float dyabs = ::fabsf(dy);

            plus<float> op;

            reduce<32>(sRow, dx, threadIdx.x, op);
            reduce<32>(sRow, dy, threadIdx.x, op);
            reduce<32>(sRow, dxabs, threadIdx.x, op);
            reduce<32>(sRow, dyabs, threadIdx.x, op);

            float4* descriptors_block = descriptors.ptr(blockIdx.x) + threadIdx.y;

            // write dx, dy, |dx|, |dy|
            if (threadIdx.x == 0)
                *descriptors_block = make_float4(dx, dy, dxabs, dyabs);
        }

        __global__ void compute_descriptors_128(PtrStep<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
        {
            __shared__ float smem[32 * 16];

            float* sRow = smem + threadIdx.y * 32;

            float dx, dy;
            calc_dx_dy(featureX, featureY, featureSize, featureDir, dx, dy);

            float4* descriptors_block = descriptors.ptr(blockIdx.x) + threadIdx.y * 2;

            plus<float> op;

            float d1 = 0.0f;
            float d2 = 0.0f;
            float abs1 = 0.0f;
            float abs2 = 0.0f;

            if (dy >= 0)
            {
                d1 = dx;
                abs1 = ::fabsf(dx);
            }
            else
            {
                d2 = dx;
                abs2 = ::fabsf(dx);
            }

            reduce<32>(sRow, d1, threadIdx.x, op);
            reduce<32>(sRow, d2, threadIdx.x, op);
            reduce<32>(sRow, abs1, threadIdx.x, op);
            reduce<32>(sRow, abs2, threadIdx.x, op);

            // write dx (dy >= 0), |dx| (dy >= 0), dx (dy < 0), |dx| (dy < 0)
            if (threadIdx.x == 0)
                descriptors_block[0] = make_float4(d1, abs1, d2, abs2);

            if (dx >= 0)
            {
                d1 = dy;
                abs1 = ::fabsf(dy);
                d2 = 0.0f;
                abs2 = 0.0f;
            }
            else
            {
                d1 = 0.0f;
                abs1 = 0.0f;
                d2 = dy;
                abs2 = ::fabsf(dy);
            }

            reduce<32>(sRow, d1, threadIdx.x, op);
            reduce<32>(sRow, d2, threadIdx.x, op);
            reduce<32>(sRow, abs1, threadIdx.x, op);
            reduce<32>(sRow, abs2, threadIdx.x, op);

            // write dy (dx >= 0), |dy| (dx >= 0), dy (dx < 0), |dy| (dx < 0)
            if (threadIdx.x == 0)
                descriptors_block[1] = make_float4(d1, abs1, d2, abs2);
        }

        template <int BLOCK_DIM_X> __global__ void normalize_descriptors(PtrStepf descriptors)
        {
            __shared__ float smem[BLOCK_DIM_X];
            __shared__ float s_len;

            // no need for thread ID
            float* descriptor_base = descriptors.ptr(blockIdx.x);

            // read in the unnormalized descriptor values (squared)
            const float val = descriptor_base[threadIdx.x];

            float len = val * val;
            reduce<BLOCK_DIM_X>(smem, len, threadIdx.x, plus<float>());

            if (threadIdx.x == 0)
                s_len = ::sqrtf(len);

            __syncthreads();

            // normalize and store in output
            descriptor_base[threadIdx.x] = val / s_len;
        }

        void compute_descriptors_gpu(PtrStepSz<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures)
        {
            // compute unnormalized descriptors, then normalize them - odd indexing since grid must be 2D

            if (descriptors.cols == 64)
            {
                compute_descriptors_64<<<nFeatures, dim3(32, 16)>>>(descriptors, featureX, featureY, featureSize, featureDir);
                cudaSafeCall( cudaGetLastError() );

                cudaSafeCall( cudaDeviceSynchronize() );

                normalize_descriptors<64><<<nFeatures, 64>>>((PtrStepSzf) descriptors);
                cudaSafeCall( cudaGetLastError() );

                cudaSafeCall( cudaDeviceSynchronize() );
            }
            else
            {
                compute_descriptors_128<<<nFeatures, dim3(32, 16)>>>(descriptors, featureX, featureY, featureSize, featureDir);
                cudaSafeCall( cudaGetLastError() );

                cudaSafeCall( cudaDeviceSynchronize() );

                normalize_descriptors<128><<<nFeatures, 128>>>((PtrStepSzf) descriptors);
                cudaSafeCall( cudaGetLastError() );

                cudaSafeCall( cudaDeviceSynchronize() );
            }
        }
    } // namespace surf
}}} // namespace cv { namespace cuda { namespace cudev

#endif // HAVE_OPENCV_CUDAARITHM